簡易檢索 / 詳目顯示

研究生: 高杰
Kao, Chieh
論文名稱: 適用於客製化自駕車之以路徑追蹤為導向的模擬器
Path-Tracking-Oriented Simulators for Customized Autonomous Vehicles
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 94
中文關鍵詞: 觀測/卡爾曼濾波器系統鑑別法模擬器改良版模型預測控制輸入限制條件姿態更新
外文關鍵詞: observer/Kalman filter identification (OKID), simulator, modified model predictive control, input constrained, pose updating
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用觀測/卡爾曼濾波器系統鑑別法建立出客製化高度非線性車控系統之模型,如Vehicle Dynamics-MATLAB & Simulink-MathWorks 2018a,並利用建構出來的模型更進一步推導出各種反應與伺服控制之車控系統相似的路徑追蹤導向之車控系統模擬器。主題包含了:一、觀測/卡爾曼濾波器系統鑑別法對於高度非線性系統之建模,例如車控系統;二、路徑追蹤導向之車控系統模擬器在監控式構架下之建立;三、路徑追蹤導向之車控系統模擬器與伺服控制之車控系統在各項特性的深入觀察。精準地說,首先,建立出車控系統之多模化數學模型並利用其結果得到路徑追蹤導向之車控系統模擬器,其結果由相關的伺服控制進行驗證。因此,加入輸入限制條件的多模化之改良模型預測控制方法及在線的速度大小與方位角更新的導入,令路徑追蹤導向之車控系統模擬器的成效卓越並得以驗證。其中,提出了以路徑追蹤導向之車控系統模擬器在監控式構架下的新策略以改善相鄰子系統因切換而引發之狀態不連續導致的暫態震盪。

    In this thesis, the customized modelling of highly nonlinear autonomous vehicles, such as the Vehicle Dynamics-MATLAB & Simulink-MathWorks 2018a, is established by using the observation/Kalman filter system identification method, and the constructed model is used to further derive the path-tracking-oriented simulator with similar characteristics comparing to the servo-controlled vehicle dynamic system. The subject contains (i) the observation/ Kalman filter system identification method-based mathematical modellings for highly non-linear systems such as the vehicle dynamic system, (ii) the construction of the supervisory structure of the path-tracking-oriented simulators, and (iii) an insight on characteristics of the path-tracking-oriented simulator and the servo-controlled vehicle dynamic system. Precisely, first the multi-mode of the vehicle dynamic system is established and the path-tracking-oriented simulator is obtained consequently. The performance of the path-tracking-oriented simulator will be verified by the associated servo controller. Thus, the multi-mode-based-modified model predictive control method with input constraints and the online pose updating of the magnitude of velocity and heading angle are also presented, so that the effectiveness of the path-tracking-oriented simulator is successfully achieved and verified. Therein, a new strategy for the supervisory structure of the path-tracking-oriented simulators is proposed to significantly improve the transient oscillation induced by the discontinuous state transition between adjacent switching subsystems.

    摘要 I Abstract II Acknowledgement III List of Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 Chapter 2 Mathematical Modellings of Autonomous Vehicles 3 2.1. Observer/Kalman filter identification 4 2.1.1. Basic observer equation 4 2.1.1.1. Markov parameter without observer 4 2.1.1.2. Markov parameter with observer 6 2.1.2. Computation of Markov parameters 8 2.1.2.1. System Markov parameters 8 2.1.2.2. Observer gain Markov parameters 9 2.1.3. Eigensystem realization algorithm 9 2.2. Computational steps of OKID 10 2.3. Mathematical modeling for vehicle 10 2.3.1. Vehicle dynamic system 12 2.3.2. System identification 12 Chapter 3 Path-Tracking-Oriented Simulators for Customized Autonomous Vehicles 27 3.1. Perfect state estimator-based simulator 28 3.2. Path-tracking-oriented simulator 30 Chapter 4 Control Technique for Path-Tracking-Oriented Simulators 35 4.1. Input-constrained model predictive control 36 4.1.1. Traditional model predictive control with input constraints 36 4.1.2. Modified observer-based model predictive control 39 4.1.3. Hildreth’s quadratic programming 41 4.2. Forward path locating and inverse path planning 43 4.2.1. Forward path locating (FPL) 43 4.2.2. Inverse path planning (IPP) 46 4.3. Desired pose updating 50 4.4. Supervisory model decision and control structure 54 Chapter 5 Illustrative Examples 58 Chapter 6 Conclusion 90 Reference 92

    [1] Armstrong, B., Khatib, O., & Burdick, J., “The explicit dynamic model and inertial parameters of the PUMA 560 arm,” Proc. 1986 IEEE Conference on Robot and Automation, San Francisco, pp. 510 518, April 7-10, 1986.
    [2] Crolla, D., Foster, D.E., Kobayashi, T., & Vaughan, N.D. Encyclopedia of automotive engineering. vol. 4, Part 5 (Chassis Systems) and Part 6 (Electrical and Electronic Systems), Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2015.
    [3] Ebrahimzadeh, F., Tsai, J.S.H.,. Chung, M.C, Liao, Y.T., Guo, S.M., Shieh, L.S., & Wang, L., “A generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 397-416, 2017.
    [4] Gillespie, T.D. Fundamentals of vehicle dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
    [5] Guo, S.M., Shieh, L.S., Chen, G.R., & Lin, C.F., “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [6] Gelbal, Ş.Y., Tamilarasan, S., Cantaş, M.R., Güvenç, L., & Aksun-Güvenç, B., “A connected and autonomous vehicle hardware-in-the-loop simulator for developing automated driving algorithms,” 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3397-3402, 2017.
    [7] Hildreth, C., “A quadratic programming procedure,” Naval Research Logistics Quarterly, vol. 4, pp. 79-85, 1957.
    [8] Highway Tire Committee. Stepwise coastdown methodology for measuring tire rolling resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
    [9] Juang, J.N., Applied system identification, Englewood Cliffs, NJ: Prentice-Hall, 1994.
    [10] Kissai, M., Monsuez, B., & Tapus, A., “Current and future architectures for integrated vehicle dynamics control,” 12th National Conference on Software and Hardware Architectures for Robots Control (SHARC2017), June 2017.
    [11] MATLAB, MathWorks, Inc., Vehicle Dynamics Blockset™ User's Guide, “https://ch.mathworks.com/help/pdf_doc/vdynblks/vdynblks_ug.pdf”, March 2019.

    [12] Nilsson, P., Laine, L., & Jacobson, B., “A simulator comparing characteristics of manual and automated driving during lane changes of long combination vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp. 2514-2524, 2017.
    [13] Pacejka, H.B. Tire and vehicle dynamics. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
    [14] Sulkowski, T., Bugiel, P., & Izydorczyk, J., “In search of the ultimate autonomous driving simulator,” 2018 International Conference on Signals and Electronic Systems (ICSES), pp. 252-256, 2018.
    [15] Tsai, J.S.H., Wang, H.H., Guo, S.M., Shieh, L.S., & Canelon, J.I., “A case study on the universal compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems with/without disturbances,” Journal of the Franklin Institute, vol. 355, pp. 3583-3618, April 2018.
    [16] Tsai, J.S.H., Chang, C.Y., Chen, Y.F., Guo, S.M., Shieh, L.S., & Canelon, J.I., “A modified functional observer-based EID estimator for unknown sampled-data singular systems,” International Journal of Systems Science, Published online: https://doi.org/10.1080/ 00207721.2019.1645919.
    [17] Tsai, J.S.H., Kuo, L.Y., Guo, S.M., Shieh, L.S., & Canelon, J.I., “Application of the observer/Kalman filter identification method to unknown time-delay disturbed systems and the associated optimal digital tracker design,” International Journal of Systems Science, (in revision) 2019.
    [18] Tsai, J.S.H., Yu, T.H., Su, T.J., Guo, S.M., Shieh, L.S., & Canelon, J.I., “A novel on-line OCID method and its application to input-constrained active fault-tolerant tracker design for unknown nonlinear systems,” International Journal of Systems Science, (in revision) 2019.
    [19] Technical Committee, Road vehicles — Vehicle dynamics and road-holding ability — Vocabulary, ISO 8855:2011, Geneva, Switzerland: International Organization for Standardization, 2011.
    [20] Vehicle Dynamics Standards Committee, Vehicle Dynamics Terminology. SAE J670, Warrendale, PA: Society of Automotive Engineers, 2008.
    [21] Wang, C.H. & Tsai, J.S.H., Advanced Control Technique for Autonomous Vehicles, Department of E.E., N.C.K.U., Tainan, Taiwan, R.O.C., Master Thesis, July 2019.
    [22] Wang, L.P., Model Predictive Control System Design and Implementation using MATLAB. London: Springer, 2009.

    [23] Wu, C.Y., Tsai, J.S.H., Guo, S.M., Shieh, L.S., Canelon, J.I., Ebrahimzadeh, F., & Wang, L., “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 352, pp. 1119-1151, 2015.
    [24] Yang, Y., Yang, G.H., & Soh, Y.C., “Reliable control of discrete-time systems with actuator failure,” IEE Proceedings-Control Theory and Applications, vol. 147, no 4, pp. 428-432, 2000.

    無法下載圖示 校內:2024-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE