簡易檢索 / 詳目顯示

研究生: 莊文河
Juang, Wen-Ho
論文名稱: 遞迴式離散傅立葉正、逆轉換及修正型離散餘弦正、逆轉換之快速演算法推演與其綠能設計之實現
A Green Implementation of the Fast Recursive DFT, IDFT, MDCT and IMDCT Algorithms
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 109
中文關鍵詞: 綠能設計離散傅立業轉換/逆轉換修正型離散餘弦正/逆轉換遞迴式質因數因數
外文關鍵詞: Green Design, DFT/IDFT, MDCT/IMDCT, Recursive, Prime Factor, Common Factor
相關次數: 點閱:238下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個具備綠能設計概念之遞迴式離散傅立業轉換(Recursive Discrete Fourier Transform, RDFT)架構,此架構具有高產量、節能、免記憶元件及可重新組態化等優點。並以RDFT為核心架構拓展出修正型離散餘弦正轉換(Modified Discrete Cosine Transform, MDCT)及其逆轉換(Inverse Modified Discrete Cosine Transform, IMDCT),達到硬體資源共享,大大地降低硬體實現成本,此為綠能設計理念之一。
    由於傳統RDFT架構運算速度過慢,為彌補速度上之限制,所提出之架構將會採取2-D形式之演算法來加以提升。本架構與最新Lai et al. RDFT[40]比較,其運算所需週期降低49.53%,在乘、加運算方面,加法運算量改善為原設計的53.03%、乘法運算量改善為原設計的53.60%。 除此之外,此架構還具有4倍之DTPT (Data Throughput per Transformation, DTPT),達成低複雜度、低功耗之綠能設計構想。
    最後,我們將此架構規劃運用於數位全球無線電廣播(Digital Radio Mondiale, DRM)系統上,該系統不僅運用到DFT運算(規格點數N=288、256、176、112),也因其採用MPGE-4 HE-AAC作為DRM音訊編解碼,故MDCT/IMDCT之運算(規格點數N=1920、240)勢必不可或缺。因此,對於一個可攜式的DRM接收器而言,如何有效的設計共架構之DFT與IMDCT實為一個重要的議題。我們藉此系統來驗證所提出之RDFT架構及以RDFT為核心之MDCT/IMDCT架構的效能,並在本論文中作各種遞迴架構之分析討論。
    所提之架構電路,利用TSMC 0.18µm 1P6M COMS製程實現,其核心面積為0.84x0.84 mm2,操作頻率為25MHz之下所測得平均功耗為14.6mW。因此,此設計能較有效率及較為合適被運用於DRM系統上。

    This thesis presents a green design of fast recursive discrete Fourier transform (RDFT) architecture. The advantages of the proposed design include high-throughput, power-efficient, memory-free and more reconfigurable. This thesis also discuss the issue of applying this RDFT design to Modified Discrete Cosine Transform (MDCT) and Inverse Modified Discrete Cosine Transform (IMDCT), which results in an improvement of hardware-sharing and achieves lower-cost.
    To improve the lack-of-efficiency problem in traditional RDFT architecture, the 2-D architecture algorithm is used in our design. Compared with the latest RDFT architecture proposed by Lai et al, 49.53% reduction of the overall clock cycles is presented in our design; and the computational amount of multiplication and addition presented are reduced to 53.60% and 53.03% of Lai’s design. In addition, the proposed architecture holds four times of DTPT (Data Throughput per Transformation, DTPT) than the traditional architecture; which achieves our goal of presenting a low complexity and low power-cost design.
    Furthermore, this architecture is applied on Digital Radio Mondiale (DRM) system in our design. Not only DFT computation(288、256、176、112 point) but MPGE-4 HE-AAC techniques are applied on DRM audio coding(1920、240 point). Therefore, to design a common architecture of DFT and IMDCT becomes an important issue for portable DRM receiver. This system is used to examine the performance of the RDFT architecture which we proposed in the front text as well as to discuss other architectures in this article.
    Moreover, this RDFT processor is implemented by using TSMC 0.18µm 1P6M CMOS technology. The core size is 0.84x0.84mm2 and the power consummation is 14.6mW@25MHz. To conclude, the proposed design would be more efficient and more suitable for DRM applications than previous works.

    摘要 i ABSTRACT iii 誌謝 v 第1章- 緒論 1 1.1 研究背景與動機 1 1.2 快速型傅立葉轉換概述及應用 1 1.3 音訊編解碼規格概述 3 1.4 章節組織 7 第2章- DRM系統及內部音訊編解碼介紹 8 2.1 DRM簡介 10 2.2 AAC簡介 15 第3章- 現有Recursive DFT/IDFT、Recursive MDCT/IMDCT演算法分析及討論 21 3.1 Goertzel's RDFT演算法 21 3.2 Van et al. RDFT/RIDFT演算法 23 3.3 Chiang and Liu's RMDCT/RIMDCT演算法 31 3.4 Chen et al. RMDCT/RIMDCT演算法 36 3.4.1 RMDCT推導 36 3.4.2 RIMDCT推導 41 3.5 Lei et al. RMDCT/RIMDCT演算法 49 3.5.1 RMDCT推導 49 3.5.2 RIMDCT推導 54 第4章- 提出改良型Recursive DFT/IDFT、Recursive MDCT/IMDCT架構及2-D形式之演算法 56 4.1 改良型RDFT演算法及IDFT使用此架構來實現 57 4.2 2-D形式及管線化加速演算法 65 4.2.1 Common Factor演算法 65 4.2.2 Prime Factor演算法 67 4.2.3 管線化加速 69 4.3 提出以DFT為核心之MDCT/IMDCT演算法 72 4.3.1 MDCT推導 72 4.3.2 IMDCT推導 77 第5章- RDFT硬體改良、規劃及動作方式 80 5.1 RDFT硬體改良 80 5.2 整體硬體規劃 82 5.3 係數產生方法及硬體動作說明 84 5.3.1 係數產生方式與旋轉因子解決方式 84 5.3.2 硬體動作方式 87 第6章- 各種演算法之分析比較與結果 91 6.1 計算週期需求評估與比較 91 6.1.1 RDFT計算週期比較 91 6.1.2 IMDCT計算週期比較 92 6.2 係數需求評估與比較 94 6.3 計算複雜度分析與硬體需求評估 96 6.4 RMS精確度分析 101 6.5 硬體晶片實現 102 第7章- 結論與未來展望 105 參考文獻 106

    [1] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comp., vol. 19, pp. 297--301, 1965.
    [2] S. Winograd, "On computing the discrete Fourier transform," Proceedings of the National Academy of Sciences of the United States of America, vol. 73, p. 1005, 1976.
    [3] S. G. Johnson and M. Frigo, "A Modified Split-Radix FFT With Fewer Arithmetic Operations," Signal Processing, IEEE Transactions on, vol. 55, pp. 111-119, 2007.
    [4] L. Qingwang, et al., "A low-power variable-length FFT processor base on Radix-24 algorithm," in Microelectronics & Electronics, 2009. PrimeAsia 2009. Asia Pacific Conference on Postgraduate Research in, 2009, pp. 129-132.
    [5] ETSI ES 201 980 V3.1.1, "Digital radio mondiale; system specification", 2009.
    [6] K. Dong-Sun, et al., "Design of a mixed prime factor FFT for portable digital radio mondiale receiver," Consumer Electronics, IEEE Transactions on, vol. 54, pp. 1590-1594, 2008.
    [7] T. Painter and A. Spanias, "Perceptual coding of digital audio," Proceedings of the IEEE, vol. 88, pp. 451-515, 2000.
    [8] ISO/ IEC JTC1/SC29/WG11, "Information Technology - Coding of Audiovisual Objects - Part 3: Audio (Subpart 4: Time/Frequency Coding)", 1998.
    [9] T. Tsai and C. Liu, "A configurable common filterbank processor for multi-standard audio decoder," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 90, pp. 1913-1923, 2007.
    [10] W. Jiasong, et al., "Mixed-Radix Algorithm for the Computation of Forward and Inverse MDCTs," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 56, pp. 784-794, 2009.
    [11] H. Shu, et al., "Radix-3 Algorithm for the Fast Computation of Forward and Inverse MDCT," Signal Processing Letters, IEEE, vol. 14, pp. 93-96, 2007.
    [12] L. Szu-Wei, "Improved algorithm for efficient computation of the forward and backward MDCT in MPEG audio coder," Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 48, pp. 990-994, 2001.
    [13] C. Che-Hong, et al., "Recursive architectures for realizing modified discrete cosine transform and its inverse," Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 50, pp. 38-45, 2003.
    [14] C. Hwang-Cheng and L. Jie-Cherng, "Regressive implementations for the forward and inverse MDCT in MPEG audio coding," Signal Processing Letters, IEEE, vol. 3, pp. 116-118, 1996.
    [15] S. Lai, et al., "Common architecture design of novel recursive MDCT and IMDCT algorithms for application to AAC, AAC in DRM, and MP3 codecs," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, pp. 793-797, 2009.
    [16] 蔡欣怡, "數位廣播發展現況分析," 公視策發部, 2007.
    [17] ETSI TS 102 563 V1.1.1, "Digital Audio Broadcasting (DAB);Transport of Advanced Audio Coding (AAC) audio", 2007.
    [18] P. Wolkotte, et al., "Partitioning of a DRM receiver," 2004, pp. 299-304.
    [19] ISO/ IEC 13818-7, "Information technology - Generic coding of moving pictures and associated audio information - Part 7: Advanced Audio Coding (AAC)", 2004.
    [20] ISO/ IEC 14496-3, "Information technology - Coding of audio-visual objects - Part 3: Audio," ed, 2005.
    [21] C. Liu and T. Tsai, "SoC platform based design of MPEG-2/4 AAC audio decoder," 2005, pp. 2851-2854.
    [22] 黃嘉雄, "MPEG-2/4 Low-Complexity Advanced Audio Coding Optimization and Implementation On Dual-Core Processor," 2006.
    [23] G. Goertzel, "An algorithm for the evaluation of finite trigonometric series," American mathematical monthly, pp. 34-35, 1958.
    [24] L. Van, et al., "VLSI Architecture for the Low-Computation Cycle and Power-Efficient Recursive DFT/IDFT Design," IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES E SERIES A, vol. 90, p. 1644, 2007.
    [25] S. F. Lei, et al., "Low Complexity and Fast Computation for Recursive MDCT and IMDCT Algorithms," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. PP, pp. 1-5, 2010.
    [26] H. Malvar, Signal processing with lapped transforms: Artech House, Inc. Norwood, MA, USA, 1992.
    [27] H. Malvar, "Fast algorithms for orthogonal and biorthogonal modulated lapped transforms," in Advances in Digital Filtering and Signal Processing, 1998 IEEE Symposium on, 1998, pp. 159-163.
    [28] H. S. Malvar, "Lapped transforms for efficient transform/subband coding," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 38, pp. 969-978, 1990.
    [29] P. Duhamel, et al., "A fast algorithm for the implementation of filter banks based on `time domain aliasing cancellation'," in Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, 1991, pp. 2209-2212 vol.3.
    [30] R. Gluth, "Regular FFT-related transform kernels for DCT/DST-based polyphase filter banks," in Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on, 1991, pp. 2205-2208 vol.3.
    [31] C. Fan and G. Su, "Novel recursive discrete Fourier transform with compact architecture," 2004, pp. 1081-1084.
    [32] C. P. Fan and G. A. Su, "Efficient Recursive Discrete Fourier Transform Design with Low Round-Off Error," International Journal of Electrical Engineering, vol. 13, pp. 9-20, 2006.
    [33] L. Yu-Wei and L. Chen-Yi, "Design of an FFT/IFFT Processor for MIMO OFDM Systems," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, pp. 807-815, 2007.
    [34] L. Yu-Wei, et al., "A dynamic scaling FFT processor for DVB-T applications," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 2005-2013, 2004.
    [35] L. Yu-Wei, et al., "A 1-GS/s FFT/IFFT processor for UWB applications," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 1726-1735, 2005.
    [36] C. Burrus and P. Eschenbacher, "An in-place, in-order prime factor FFT algorithm," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 29, pp. 806-817, 1981.
    [37] M. Schroeder, Number theory in science and communication: Springer, 1986.
    [38] G. Chih-Da Chien and J. Guo, "A Memory-Based Hardware Accelerator for Real-Time MPEG-4 Audio Coding and Reverberation," 2007, pp. 1569-1572.
    [39] H. Li, et al., "An efficient hardware accelerator architecture for implementing fast IMDCT computation," Signal Processing, 2010.
    [40] S.-C. Lai, et al., "Low-Computation cycle, Power-Efficient, and Reconfigurable Design of Recursive DFT for Portable Digital Radio Mondiale Receiver," Circuits and Systems II: Express Briefs, IEEE Transactions on, pp. 1-5, 2010.
    [41] C. Wey, et al., "High-speed, low cost parallel memory-based FFT processors for OFDM applications," 2007.
    [42] L. VAN and C. YANG, "High-speed area-efficient recursive DFT/IDFT architectures," 2004, pp. 357-360.
    [43] L. Shin-Chi, et al., "Low Computational Complexity, Low Power, and Low Area Design for the Implementation of Recursive DFT and IDFT Algorithms," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 56, pp. 921-925, 2009.
    [44] H. Chun-Lung, et al., "A low power and variable-length FFT processor design for flexible MIMO OFDM systems," in Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2009, pp. 705-708.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE