簡易檢索 / 詳目顯示

研究生: 蘇瑞峰
Su, Jui-Feng
論文名稱: 以噴印技術製備奈米複合絕緣層應用於有機薄膜電晶體
Preparation of Nanocomposite Gate Dielectrics for Organic Thin-film Transistors Application by Ink-Jet Printing
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 125
中文關鍵詞: 薄膜電晶體奈米複合絕緣層
外文關鍵詞: nanocomposite dielectrics, dielectric constant
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機薄膜電晶體(Organic Thin Film Transistors,OTFTs)年來受到廣泛的研究,因其有低成本、低溫製成及可撓曲的優點,並且可以利用溶液製程來製作。但其相對於非晶矽的薄膜電晶體來說,載子遷移率(Carrier mobility)比較小以及臨界電壓(Threshold voltage)偏大都是等待改善之目標。
    本論文中我們利用噴印技術製備有機薄膜電晶體的奈米複合絕緣層,免除傳統之黃光製程,並且在有機絕緣層高分子材料cross-linked poly(4-vinylphenol) (PVP)中摻雜TiO2之奈米粉體,以期提高絕緣層之介電常數,進而改善有機薄膜電晶體之特性。為了把TiO2奈米粉體分散得夠小且均勻,我們利用高速珠磨(Pearl mill)分散技術來達到此需求,並對其研磨分散條件做探討。接下來我們對噴印製程條件之驅動電壓大小、操作頻率以及壓電波形對噴墨情況最佳化,成功地噴印出奈米複合絕緣層,達到直接圖案化的目的。
    我們在以噴印取代傳統旋轉塗佈製作之奈米複合絕緣層上,蒸鍍Pentacene來製作有機薄膜電晶體。藉由摻雜TiO2的奈米複合絕緣層,我們成功的將載子遷移率提升到0.58 cm2/ Vs,並把臨界電壓降低到-5.4 V。最後,我們以XRD、SEM及Raman光譜來探討Pentacene沉積在這些不同之絕緣層上的傳輸行為。

    Recently, Organic Thin Film Transistors (OTFTs) have been studied widely because of potential applications in low cost, low-temperature process and flexible displays. They can be fabricated by easy processes based on solution methods. But the mobility of OTFTs is lower and the threshold voltage is higher than amorphous Si TFTs.
    In our study, we prepare the nanocomposite dielectrics by ink-jet printing to avoid the photography process. The nanocomposite dielectrics consist of cross-linked PVP and high-k TiO2 nanoparticles used to increase the dielectric constant and hence improve the performance of OTFTs. In order to well disperse the TiO2 particles, we utilize pearl mill to achieve our requirements. Then we optimize the parameters of ink-jet printing, including voltage, frequency and waveform. We successfully print dielectrics patterns, accomplishing the purpose of directly-patternable.
    We deposit pentacene on the nanocomposite dielectrics of best performance by thermal deposition process to demonstrate OTFTs. We eventually demonstrate high performance OTFTs of mobility 0.58 cm2/Vs and Vth-5.4 V. And we used XRD, SEM, Raman spectroscopy to help us analyze the transfer characteristics of pentacene films and the performance of OTFTs.

    目次 中文摘要 II Abstract III 致謝 IV 目次 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究動機與方向 1 1-2 論文架構 2 第二章 有機薄膜電晶體 3 2-1 有機薄膜電晶體概論 3 2-1-1 有機薄膜電晶體發展 3 2-1-2 有機半導體載子傳輸理論 4 2-1-3 有機薄膜電晶體操作原理 7 2-1-4 有機薄膜電晶體參數 9 2-1-5 金屬與半導體界面接觸 14 2-2 主動層-五苯環(Pentacene) 17 2-2-1 Pentacene材料特性 17 2-2-2 Pentacene分子結構 17 2-3 有機/無機奈米材料複合絕緣層 19 2-3-1 應用背景 19 2-3-2 應用原理 19 2-4 PVP (Poly-(4-vinylphenol))性質介紹 21 2-5 TiO2 奈米粉體性質介紹 22 2-6 奈米粉體分散與研磨 23 第三章 噴墨(inkjet)技術 26 3-1 噴墨技術分類 26 3-2 噴墨技術原理 27 3-2-1 連續產生形(Continuous inkjet) 27 3-2-2 控制產生形(Drop-on-demand) 27 3-3 噴墨溶液 31 3-4 噴墨印刷與旋轉塗佈之比較 32 第四章 實驗架構 33 4-1 實驗規劃 33 4-2 實驗材料 36 4-3 實驗流程 36 4-3-1 玻璃基板之準備 36 4-3-2 複合絕緣層製作 37 4-3-3 有機半導體層製作 37 4-3-4 金屬電極製作 38 4-4 實驗儀器 39 4-4-1 製程儀器 39 4-4-2分析儀器 42 第五章 實驗結果與討論 44 5-1 TiO2奈米粉體分散之分析 44 5-1-1 分散劑含量 45 5-1-2 研磨時間 46 5-1-3 研磨轉速 47 5-2 有機/無機奈米複合材料溶液性質分析 52 5-3 噴印製程摻數對噴墨行為之分析 54 5-3-1 電壓大小之影響 55 5-3-2 操作頻率之影響 67 5-3-3 壓電波形之影響 79 5-3 咖啡環現象 89 5-4噴印有機/無機複合絕緣層之分析 92 5-4-1 絕緣層膜厚 92 5-4-2 絕緣層薄膜噴印之圖形 94 5-4-3 絕緣層特性之分析 97 5-4-4 噴印與旋轉塗佈法之比較 104 5-5 OTFTs元件分析 107 5-5-1 OTFTs元件電性量測 107 5-5-2 OTFTs元件電性探討 112 5-6 Pentacene主動層分析 114 第六章 結論與未來展望 120 參考文獻 121

    [1] J.H. Schan. et. al. "On the Intrinsic Limits of Pantacene Field-effect Transistors", Organic Electronic, Vol. 1, No. 1, p.57.

    [2] F.Ebisawa, T.Kurokawa ,and S. Nara, “Electrical Properties of Polyacetylene/Polysiloxane Interface”, J. Appl. Phys. 54, 3255 (1983)

    [3] A. Tsumura, H. Koezuka ,and T. Ando, ”Macromolecular electronic device : Field-Effect Transistors with a Polythiophene Thin Film”, Appl. Phys. Lett. 49,1210 (1986)

    [4] H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18, 699 (1987); A. Tsumura, H. Koezuka, and Y. Ando, Synth. Met. 25, 11 (1988).

    [5] G.. Horowitz, X. Z. Peng, D. Fichou, and F. Garnier, “Role of Semiconductor/insulator Interface in the Characteristics of -Conjugated-Oligomer-Based Thin-Film Transistors”, Syn. Met. 51, 419 (1992)

    [6] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked Pentacene Organic Thin-Film Transistors with Improved Characteristics”, IEEE Electron Device Letters, 18, 606 (1997)

    [7] H. Koezuka, A. Tsumura, and T. Ando, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Synth. Met. 18, 699 (1987).

    [8] G. Horowitz, Adv. Mater. 10, 365 (1998)

    [9] S. S. Zumdahl, Chemistry. New Wun Ching Developmental Publishing, P. 222, 2003.

    [10] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater. 10, 365 (1998)

    [11] Donald A. Neamen, Semiconductor Physics & Devices, 3rd ed., McGraw Hill, (2003)

    [12] N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, “Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism” Appl. Phys. Lett., Vol.82, pp.70-73, (2003).

    [13] E. M. Suuberg, “Vapor pressures and enthalpies of solution of polycyclic aromatic hydrocarbons and theirderivatives," J. Chem. Eng. Data, vol.43, no. 3, pp.486–492, 1998.

    [14] Sandra E. Fritz, Stephen M. Martin, C. Daniel Frisbie, Michael D. Ward, ”Structural Characterization of a Pentacene Monolayer on an Amorphous SiO2 Substrate with Grazing Incidence X-ray Diffraction” J. AM. CHEM. SOC. 9 Vol.126, No.13, (2004)

    [15] Iwao Yagi, Kazuhito Tsukagoshia, Yoshinobu Aoyagi, ”Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers” Thin Solid Films, 467, pp.168-171, (2004)

    [16] C. D. Dimitrakopoulos and D. J. Mascaroz, “Organic thin-film transistors: A review of recent advances” IBM J. RES. & DEV., Vol.45, No.1, (2001)

    [17] 徐國財, 張立德編著, 奈米複合材料 Nano composite material

    [18] Kyunghee Choi, D. K. Hwang, Kimoon Lee, Jae Hoon Kim, and Seongil Im, ”Pentacene Thin-Film Transistors with Polymer/TiOx Double-Layer Dielectrics Operating at 3V” Electrochemical and Solid-State Letters, 10, pp.114-116, (2007)

    [19] A.L. Deman , J. Tardy, ” Stability of pentacene organic field effect transistors with a low-k polymer/high-k oxide two-layer gate dielectric” Materials Science and Engineering, pp.421-426, (2006)

    [20] R. J. H. Clark, “The chemistry of titanium and vanadium”, Elsevier, Amsterdam(1968).

    [21] 高濂、孫靜、劉陽橋編著, 奈米粉體的分散及表面改性

    [22] 陳仁英 著, 新一代奈米粉體分散研磨及界面改質之技術及應用

    [23] S. Schaer, G. Arnosti, S. Pilotek, F. Tabellion and H. Naef, “Converting of Nanoparticles in Industrial Product Formulations: Unfolding the Innovation Potential”, Tecchnical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade show, Volume 2, P 743-746

    [24] Le, H. P., "Progress and trends in ink-jet printing technology," Journal of Imaging Science and Technology, 1998, 42(1): p. 49-62.

    [25] 殷夢雲 著, 噴墨印表機設計原理, 全華圖書股份有限公司, 2002

    [26] B. Jurgen and Alex M. Grishin, Piezoelectric Shear Mode Drop-on-Demand Inkjet Actuator, Sensors and Actuators, A: Physical, Vol.101, No.3, pp.371-382, 2002.

    [27] “Viscosity and Flow Measurement;. A Laboratory. Handbook of. Rheology.” Interscience. Publishers, New York. NY.

    [28] B.D. Coleman, H. Markowitz and W. Noll, Viscometric flows of Non-Newtonian Fluids, Springer-Verlag, New York, 1966.

    [29] 吳鉉忠, “壓電式微液滴噴射數學模擬系統之開發與實驗研究” , 碩士論文 , 國立成功大學 (2004)

    [30] K. H. A. Byoung Wook Jo, Ayoung Lee and S. J. Lee, “Evaluation of jet performance in drop-on-demand (dod) inkjet printing,” Korean J. Chem. Eng., vol. 26(2), pp. 339–348, 2009.

    [31] Dong H M, Carr W W and Morris J F 2006 An experimental study of drop-on-demand drop formation Phys. Fluids, 18, 072102

    [32] M.H. Tsai, W.S. Hwang, H.H. Chou and P.H. Hsieh, “Effects of Pulse Voltage on Inkjet Printing of A Silver Nanopowder Suspension”, Nanotechnology, 19, 2008, pp. 335304.1-335304.9

    [33] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. "Capillary flow as the cause of ring stains from dried liquid drops". Nature 389: 827–829.

    [34] D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect”, Langmuir, 24, 2008, p 2224-2231.

    [35] 郭奕彬, “高介電常數有機/無機複合絕緣層有機薄膜電晶體製作與研究”, 2007

    [36] Soeren Steudel, Stijn De Vusser, Stijn De Jonge, Dimitri Janssen, Stijn Verlaak, Jan Genoe, and Paul Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors” , Appl. Phys. Lett., Vol. 85, No. 19, 8 November 2004.

    [37] Frank-J. Meyer zu Heringdorf, M. C. Reuter & R. M. Tromp, “Growth dynamics of pentacene thin films” IBM T.J. Watson Research Center, Yorktown Heights, PO Box 218, New York 10598, USA.

    [38] D. Knipp, R. A. Street, A. Volkel and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys., 93, 347 (2003).

    [39] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater. 14, 99, 2002.

    [40] D. J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson and D.G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility. IEEE Electron Device Lett., 1997. 18: p. 87-89.

    [41] A. Di Carloal, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors,” Appl. Phys. Lett., 86, 263501 (2005)

    [42] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H. E. Katz, "Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors, " Science 1996, 272, 1462.

    [43] T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith and T.D. Jones, “High performance Organic. Thin Film Transistors,” in Mat. Res. Soc. Symp. Proc., vol. 771, pp. L6.5.1–L6.5.10, 2003
    [44] M. Shtein , J. Mapel , J. B. Benziger , S. R. Forrest ,“ Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors ”, Appl. Phys. Lett. 81, 268 , 2002.

    [45] H. L. Cheng; W. Y. Chou; C. W. Kuo; Y. W. Wang; Y. S. Mai; F. C. Tang; S. W. Chu,2008,Influence of Electric Field on Microstructures of Pentacene Thin Films in Field-Effect Transistors,Adv. Funct. Mater.; Adv. Funct. Mater.,18,2,pp285-293

    [46] H. L. Cheng; W. Y. Chou; C. W. Kuo; F. C. Tang; Y. W. Wang,2006,Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in-situ microRaman spectroscopy,Appl. Phys. Lett.; Appl. Phys. Lett.,88,17,pp161918

    [47] H. L. Cheng; X. W. Liang; W. Y. Chou; Y. S. Mai; C. Y. Yang; L. R. Chang; F. C. Tang,2009,Raman Spectroscopy Applied to Reveal Polycrystalline Grain Structures and Carrier Transport Properties of Organic Semiconductor Films: Application to Pentacene-based Organic Transistors,Org. Electron.; Org. Electron.,10,pp289-29

    [48] A. S. Davydov, “Theory of Molecular Excitons”, McGraw-Hill, New York, p. 21 (1971).

    [49] W. Y. Chou, and H. L. Cheng, “An Orientation-Controlled Pentacene Film Aligned by Photoaligned Polyimide for Organic Thin-Film Transistor Applications,” Adv. Funct. Mater.14, 811 (2004).

    無法下載圖示 校內:2015-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE