| 研究生: |
黃銘祥 Huang, Ming-Hsiang |
|---|---|
| 論文名稱: |
光達點雲輔助小面立體視覺之研究 A Study on LiDAR Aided FAST Vision |
| 指導教授: |
蔡展榮
Tsay, Jaan-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 數值地表模型 、影像匹配 、小面立體視覺 、光達點雲 、正射影像 |
| 外文關鍵詞: | Ortho Image, DSM, Image Matching, FAST Vision, LiDAR point cloud |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小面立體視覺法 (Facets stereo vision,簡稱FAST Vision)是一種使用數位影像自動重建數值地表模型DSM和求定數位正射影像的數位影像匹配法。一般使用空載光達點雲製作DSM時,常須先透過人工藉由影像判釋地形特徵並從大量光達點雲篩選出地表點雲,且各掃描線間距較同一條掃描線內的點間距大,且無法詳實記錄地表特徵線,將造成較大的內插誤差。而FAST Vision將影像匹配、數值地表模型求定及正射影像計算三者同時完成,它在求逆過程中也會遇到所謂的劣態問題(Ill-posed Problems),欲解決此一問題可引入空間中的約制條件進行正則化(regularization)處理。而本研究之目的即是要將光達點雲資料以特定模式加入小面立體視覺法,整合空載光達點雲資料和多張數位影像進行小面立體視覺計算,將光達點雲的高程資訊當作一種空間約制條件,探討其處理劣態問題、重建零階不連續物面及其提升計算速度的效果。研究成果顯示,有無引入光達模式的正射影像及輻射參數g0'、g1'成果無論在平坦計算區或是具有零階不連續面之計算區都有高吻合度。平坦區之DSM格點標準偏差之rms值引入光達模式後從0.29 m下降為0.07 m,而具有零階不連續面之計算區則從0.14 m下降為0.07 m。平坦區DSM成果與LiDAR DSM之差異不大,高程差值平均從0.014 m降為0.011 m、差值的rms值從0.036 m降為0.033 m,但有零階不連續區與LiDAR DSM之高程差值平均從0.579 m降為0.057 m,而差值的rms值也從0.635 m降為0.203 m。此外,在零階不連續區域計算時間可節省約40%,但在平坦區計算時間相差不到1秒。
Facets stereo vision (FAST Vision) is an image matching method, in which digital surface model (DSM) generation and ortho image computation are simultaneously done. DSM can also be generated by using airborne LiDAR points, from which LiDAR points on the interest surface must be first selected. It is often aided by manual image interpretation. Also, the interpolated DSM might have large interpolation errors due to the lack of break lines and larger interval between two neighboring laser scanning lines. This study will propose an approach for integration of airborne LiDAR points with image data for a more efficient FAST Vision computation. It will be examined whether the so-called ill-posed problem could be solved in a more robust manner by adding some proper geometrical constraints provided by the airborne LiDAR points into the regularization process.
Experimental results show that ortho images and linear transfer parameters in the computations with and without LiDAR points can be regarded as the same. After adding LiDAR points, the root mean square values of the standard deviations of heights on DSM grid points are decreased from 0.29m to 0.07m and from 0.14m to 0.07m in flat areas and in the area with break lines, respectively.
The height differences between DSMs determined by FAST Vision with LiDAR points and directly by interpolation using LiDAR points have significantly decreased after using LiDAR points. In areas with break lines, their averages and root mean square values are decreased from 0.579m to 0.057m and from 0.635m to 0.203m, respectively, for the DSMs determined by FAST Vision with and without LiDAR points. The computation time also reduces to 60% of the one for the FAST Vision computation without LiDAR points.
王聖鐸,2005,「以浮測模型理論萃取三維空間資訊-以建物重建為例」。國立成功大學測量及空間資訊學系,博士論文。
王蜀嘉,1982,「航測定點之精度」,第一屆測量學術及應用研討會。
王蜀嘉,2006,「Z/I DMC 數位像機影像幾何誤差探討」,第二十五屆測量及空間資訊研討會。
王蜀嘉、張祖勛,2006,「航測數位像機對空載雷射掃瞄帶來的衝擊」,第二十五屆測量及空間資訊研討會。
李志宏,2002,「應用線特徵物求解攝影測量方位參數與物型重建」,國立台灣大學土木研究所,碩士論文。
李宏君,2008,「從空載光達點雲之反射強度萃取道路交通標線交點」,國立成功大學測量及空間資訊學系研究所,碩士論文。
李姝儀,2005,「從地面雷射點雲萃取物面角特徵供多測站資料連結之研究」,國立成功大學測量及空間資訊學系研究所,碩士論文。
於宗俦、魯林成、陶本藻、周永前、高士純、任慧舲、邱卫宁、王新洲、于正林、崔希璋,1996,「測量平差基礎」,武漢測繪科技大學測量平差教研室。
高治喜,1991,「小面解析立體視覺模式在一維方向之建立與探討」,國立成功大學航空測量研究所,碩士論文。
徐偉城,1999,「空照彩色立體像對中人工建築物萃取之研究」,國立中央大學土木工程研究所,碩士論文。
陳金徽,2006,「數位影像輻射品質之客觀指標評估」,國立成功大學地球科學研究所,碩士論文。
陳繼藩、范成楝,2000,「空載視訊影像鑲嵌方法之研究」,第二十屆測量學術及應用研討會,第 801-805頁。
曾三友、康立山、丁立新、黃元江,2003,「一种基于正则化方法的准最佳图像复原技术」,软件学报,14(3):689-696。
湯凱佩、曾義星,2004,「以八分樹三維網格結構組織光達點雲資料並進行平面特徵萃取」,第二十三屆測量學術及應用研討會論文集,第143~150頁。
劉金燁 ,2007。「連結長方體法之設計與初步成果之品質評估」。國立成功大學 測量及空間資訊學系,碩士論文。
趙鍵哲、彭念豪,2005,「以光達資料之控制直線求解單張像片外方位參數之模式探討與可行性評估」,航測及遙測學刊,10(1):89-102。
鄭心惠,2002,「遙測影像空間品質之評估」,國立成功大學測量工程學系,碩士論文。
蔡展榮,1996,「小波數學函數與理論輔助小面立體視覺法進行快速物面重組」, 航測及遙測學刊,1(1):59-68。
蔡展榮,1997,「參數型立方迴旋內插法」,中國土木水利工程學刊,第九卷,第三期,第483~490頁。
謝宗霈,2007,「應用影像計算於地表變位之監測-以紅菜坪地滑為例」,國立成功大學地球科學研究所,碩士論文。
Chen, M.-H. , Chen C.-F.,2002,“Target Positioning Using Object Tracking Technique for Video Images”, ACRS 2002, pp. 1-6.
D’Apuzzo, N., Plaenkers, R., FUA, P. , 2000, “Least Square Matching Tracking Algorithm for Human Body Modeling”, IAPRS Vol. XXXIII, Part B5. Amsterdam, pp. 164-171.
Daubechies, I., 1988, “Orthonormal Bases of Compactly Supported Wavelets”, Comm. Pure and Appl. Math., 41, 909-996.
Delara, R., Mitishita, E. A. Habib, A., 2004, “Bundle Adjustment of Images from Non-Metric CCD Camera Using Lidar Data As Control Points”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 13–18.
Ebner, H. and Ohlhof, T., 1994, “Utilization of Ground Control Points for Image Orientation without Point Identification in Image Space”, International Archives of Photogrammetry and Remote Sensing, ISPRS Commission III Symposium, Munich, Sep, 30(Part 3/1):206-211.
Franek, M., Müller, J., 1990, “Regularizing Visible Surface Reconstruction with Facets Stereo Vision(FAST Vision)”, ISPRS, Comm. III Wuhan, 132-143.
Fritsch, D., Kilian, J., 1994,“Filtering and Calibration of Laser Scanner Measurements”, International Archives of Photogrammetry and Remote Sensing, 30(3), 227-234.
Göpfert,W., 1987, “Raumbezogene Informationssysteme”, Herbert Wichmann Verlag, Karlsruhe.
Haala, N., 1994, “Detection of Building by Fusion of Range and Image Data”, International Archives of Photogrammetry and Remote Sensing 30(3), 341-346.
Habib, A., Ghanma, M., Morgan, M., Al-Ruzouq, R., 2005, “Photogrammetric and LiDAR Data Registration Using Linear Features”, Photogrammetric Engineering and Remote Sensing 71(6): 699-707.
Hartley, R., Zisserman, A. , 2000, “Multiple View Geometry in Computer Vision”, Cambridge University Press.
Heipke, C., 1992, “A Global Approach for Least Square Image Matching and Surface Reconstruction in Object Space”, Photogrammetric Engineering and Remote Sensing, Vol. 58, No. 3, pp.317-323.
Hong, S.-M. , 2002,“Steady-State Analysis of Computational Load in Correlation-Based Image Tracking”, in Proceedings of the IEE Conference on Vision, Image, and Signal Processing, Vol. 149, No. 3, pp. 168-172.
Hoschek, J., Lasser, D., 1989, “Grundlagen der Geometrischen Datenverarbeitung”. Teubner, Stuttgart.
Kim, C., Ghanma, M., Habib, A., 2006, “Integration of Photogrammetric and LIDAR Data for Realistic 3D Model Generation”, http://regard.crg.ulaval.ca
/2006/proceedings/13-kim_et_al.pdf. (accessed on April 2009)
Lillesand, T.M., Kiefer, R.W., 2008, “Remote Sensing and Image Interpretation”, 6th ed., , John Wiley&Sons, Inc.
Lo, K.C., 1994, “High Quality Automatic DEM Generation from Multiple Imagery”, Dissertation, Uni. Twente, The Netherlands.
Mitishita, E., A. Habib, J. Centeno, A. Machado, J. Lay, C. Wong, 2008, “Photogrammetric and LiDAR Data Integration Using the Centroid of a Rectangular Roof as a Control Point”, The Photogrammetric Record 23(121): 19-35.
Newman,W.M., Sproull,R.F.,1986,“Grundzüge der interaktiven Computer-
graphik”. McGraw-Hill, Hamburg.
Nguyen, H. T., Worring, M., Boomgaard, 2001,“Occlusion robust adaptive template tracking” Eighth IEEE International Conference on Computer Vision, Volume: 1, pp. 678-683 , 7-14 July, Vancouver, BC, Canada.
Schenk, T., 2004, “From Point-Based to Feature-Based Aerial Triangulation”, ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 58, pp.315-329.
Schenk, T., Csathó, B., 2002, “Fusion of Lidar Data and Aerial Imagery for a More Complete Surface Description”, International Archives of Photogrammetry and Remote Sensing, 34(3A), 310-317.
Tikhonov, A.N., Arsenin, V.Y., 1977, “Solutions of Ill-Posed Problems”, V.H. Winston & Sons, Washington D.C.
Trucco, E., Verri, A. , 1998,“Introductory Techniques for 3-D Computer Vision ”,Prentice Hall.
Tsay, J.R., 1996,“Wavelets fuer das Facetten-Stereosehen”, Deutsche Geodaetische Kommission, Reihe C, Nr.454,Munich, Germany.
Tsay, J.R.,Wrobel, B.P.,1994,“Models and Algorithms to Improve the Basis of Facets Stereo Vision”, ISPRS Comm. III Symposium, September 5-9 in Munich, 842-849.
Wagner, W., A. Ullrich, V. Ducic, T. Melzer, N. Studnicka, 2006, “Gaussian Decomposition and Calibration of a Novel Small-Footprint Full-Waveform Digitising Airborne Laser Scanner”, ISPRS Journal of Photogrammetry and Remote Sensing 60(2): 100-112.
Wang, M., Tseng, Y-H., 2005, “Automatic 3D Feature Extraction from Structuralized LIDAR Data”, ACRS 2005, 26th Asian Conference on Remote Sensing, 7-11 Nov 2005, Hanoi, Vietnam. (CD-ROM)
Wehr, A. and Lohr, U., 1999, “Airborne Laser Scanning─An Introduction and Overview”, ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3): 68-82.
Weisensee,M.,1992, “Modelle und Algorithmen für das Facetten-Stereosehen”, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschafter Reihe C, Nr. 374, ,Munich, Germany.
Winter, D., 1993, “Optische Verschiebungsmessung nach dem Objektrasterprinzip mit Hilfe eines flächenorientierten Ansatzes”, Dissertation, Fakultät für Maschinenbau und Elektrotechnik der TU Carolo-Wilhelmina zu Braunschweig, Germany.
Wolf, P. R. , Dewitt, B. A., 2000, “Elements of Photogrammetry with Applications in GIS”, 3rd ed., McGraw-Hill.
Wrobel B.P.,1987a,“Digital Image Matching by Facets Using Object Space Models. 4th International Symposium on Optical and Optoelectronic Applications in Science and Engineering”,30.March – 3.April,The Hague, The Netherlands, The International Society for Optical Engineering 804,pp.325-333.
Wrobel B.P.,1987b,“Digitale Bildzuordnung durch Facetten mit Hilfe von Objektraummodellen”, Bildmessung und Luftbildwesen 55(3), 93-101.
Wrobel B.P.,1987c,“Facets Stereo Vision (FAST Vision) – A New Approach to Computer Stereo Vision and to Digital Photogrammetry”, Intercommission Conference of ISPRS on Fast Processing of Photogrammetric Data, Interlaken, June 2-4,231-258.
Wrobel B.P.,1987d,“Einige Überlegungen über die theoretischen Grundlagen der digitalen Photogrammetrie”, Bildmessung und Luftbildwesen 55(4),129-140.
Wrobel B.P.,Müller, J.,1990, “ Zur Wahl der Facettierungsparameter für die Oberflächenrekonstruktion mit FAST Vision”, ISPRS, Comm. V, Vol. 28, part5/1, Zürich, Septemper 3-7, Session A7, 471-478.
Wrobel, B.P., Kaiser, B., Hausladen, J., 1992, “Adaptive Regularization of Surface Reconstruction by Image Inversion ”, In: Förstner, W., Ruwiedel, St.(eds): Robust Computer Vision. Wichmann Verlag, Karlsruhe, 351-371.