簡易檢索 / 詳目顯示

研究生: 陳孟延
Chen, Meng-Yen
論文名稱: 口腔纖維化之間質纖維母細胞具有促進腫瘤新生的特性並與區域癌化有關
Stroma of oral submucous fibrosis can promote oral field cancerization
指導教授: 陳玉玲
Chen, Yuh-Ling
王東堯
Wong, Tung-Yiu
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 50
中文關鍵詞: 口腔黏膜下纖維化腫瘤微環境區域癌化
外文關鍵詞: oral submucous fibrosis, tumor microenvironment, field cancerization
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔黏膜下纖維化是一與口腔癌有關之癌前病變。在口腔癌,乳癌及肝癌,區域癌化(Field cancerization)的觀念可解釋這些惡性腫瘤的復發或新生。在惡性腫瘤的發生過程中,領域癌化是因廣泛區域內細胞與致癌物質接觸後,逐漸朝惡性細胞演化所造成,但領域癌化的實際機轉尚未清楚地了解。現在已經普遍地接受癌症是一上皮與基質細胞或細胞外間質互動有問題所導致的疾病。腫瘤周邊環境與基質細胞也對腫瘤生成,腫瘤轉移與抗藥性有重要影響。近年來領域癌化是肇因於腫瘤周邊環境的假說不斷提出,但鮮有人體證據,口腔黏膜下纖維化是一基質性(stroma)疾病,且與癌症發生相關;故以此疾病作為研究對象。本研究中,我們發現口腔黏膜下纖維化病人之癌症再發生率高(P<0.001),並利用初代培養的纖維母細胞收集狀態培養液,發現口腔粘膜下纖維化之纖維母細胞細胞激素具有類似口腔癌之纖維母細胞之促進腫瘤細胞與異生細胞移行的能力;且Fibronectin這類與細胞移行有關的細胞外間質在口腔癌與口腔黏膜下纖維化基質皆有較多表現。綜合以上結果,口腔黏膜下纖維化這類良性病變中,其細胞外間質與纖維母細胞皆已有類似於口腔癌基質之表型。臨床資料與細胞組織觀察皆顯示口腔黏膜下纖維化是一基質造成之領域癌化故期望本研究可提供一些線索以利於口腔癌之早期預防,且提供防止口腔癌再發或局部復發之治療新標的。

    Oral submucous fibrosis (OSF) is a premalignant condition which is related to oral cancer formation. Concept of field cancerization fit the clinical outcome of various kinds of malignant tumor such as oral cancer, breast cancer, and hepatocellular carcinoma. Carcinogen-exposed tissue fields develop clonal malignant cells during evolution of neoplastic lesions. But the mechanism of field cancerization was not well understood. Cancer as a disease of unbalancing epithelial–mesenchymal interactions and extracellular matrix regulation was well accepted. Tumor microenvironment and its stromal cell had been convinced to play an important role on carcinogenesis, metastasis and drug resistance. In recent year, many researchers proposed that field cancerization was determinant primarily by the stroma, but it lack human tissue evidence. OSF is a stromal disease, and related to cancer formation. Therefore, we would like to determine whether OSF cases were highly associated with multiple oral filed tumorgenesis. We survey OSF cases in NCKU hospital, and higher incidence of multiple primary oral cancer was noted (P<0.001). Conditioned medium collected from primary cultured OSF fibroblast could promote oral precancer cell (DOK) and oral cancer cell migration just like that from cancer associated fibroblast. Fibronectin, the cell migration related ECM was highly expressed in tumor and OSF stroma. Taken together, our result indicated that benign precancer lesions such as OSF stroma can have similar phenotype with malignant stroma which may provide a possible model to explain stroma is a primary determinant of multifocal epithelial tumor and field cancerization. We hope that our study could provide some clue for prevention of primary or second primary tumor formation.

    CHINESE ABSTRACT 2 ENGLISH ABSTRACT 3 ACKNOWLEDGEMENT 5 LIST OF TABLES 9 LIST OF FIGURES 10 CHAPTER 1 INTRODUCTION 11 1.1 Background 11 1.2 Rationale 12 1.3 Hypothesis 13 1.4 Specific aims 13 CHAPTER 2 MATERIAL AND METHODS 14 2.1 Material 14 2.1.1 Cell culture 14 2.1.2 Patients 15 2.2 Methods 15 2.2.1 Conditioned medium 15 2.2.2 Cell migration assay 15 2.2.3 Immunohistochemical staining 16 2.2.4 Computed Quantification of Immunohistochemical Staining 17 2.2.5 Distance of Maximal mouth Opening and Cancer formation in OSF patients 18 2.2.6 OSF patients and Incidence of Second primary cancer formation 18 2.2.7 Statistical analysis 19 CHAPTER 3 RESULT 20 3.1 OSF Patients had higher Incidence of Second primary cancer formation 20 3.2 Distance of Maximal Mouth Opening in OSF patient without relation to higher oral cancer formation incidence 20 3.3 Cancer associated fibroblasts, and OSF associated fibroblasts showed similar characteristics 21 3.4 Computed Quantification of Immunohistochemical Staining showed comparable amount of fibronectin expression in OSF stroma and tumor stroma 22 3.5 Conditioned medium from OSF and cancer associated fibroblasts could stimulate oral precancer cell and cancer cell migration 23 3.6 Fibronectin expression was higher in conditioned medium from OSF and oral cancer associated fibroblast 23 CHAPTER 4 DISCUSSION 24 CHAPTER 5 CONCLUSION 28 CHAPTER 6 REFERENCE 29 CHAPTER 7 TABLE 31 CHAPTER 8 FIGURES 32

    Angadi, P. V., Savitha, J. K., Rao, S. S., & Sivaranjini, Y. (2012). Oral field cancerization: current evidence and future perspectives. Oral Maxillofac Surg, 16(2), 171-180. doi: 10.1007/s10006-012-0317-x
    Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., . Moses, H. L. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848-851. doi: 10.1126/science.1090922
    Braakhuis, B. J., Tabor, M. P., Kummer, J. A., Leemans, C. R., & Brakenhoff, R. H. (2003). A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res, 63(8), 1727-1730.
    Califano, J., van der Riet, P., Westra, W., Nawroz, H., Clayman, G., Piantadosi, S.,. Sidransky, D. (1996). Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res, 56(11), 2488-2492.
    Campisi, J., Andersen, J. K., Kapahi, P., & Melov, S. (2011). Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol, 21(6), 354-359. doi: 10.1016/j.semcancer.2011.09.001
    Celik, N., Wei, F. C., Chang, Y. M., Yang, W. G., Chen, D. J., & Tsai, C. Y. (2002). Squamous cell carcinoma of the oral mucosa after release of submucous fibrosis and bilateral small radial forearm flap reconstruction. Plast Reconstr Surg, 110(1), 34-38.
    Chang, S. E., Foster, S., Betts, D., & Marnock, W. E. (1992). DOK, a cell line established from human dysplastic oral mucosa, shows a partially transformed non-malignant phenotype. Int J Cancer, 52(6), 896-902.
    Costea, D. E., Hills, A., Osman, A. H., Thurlow, J., Kalna, G., Huang, X., . . . Partridge, M. (2013). Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res, 73(13), 3888-3901. doi: 10.1158/0008-5472.can-12-4150
    De Wever, O., & Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. J Pathol, 200(4), 429-447. doi: 10.1002/path.1398
    Dotto, G. P. (2014). Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J Clin Invest, 124(4), 1446-1453. doi: 10.1172/jci72589
    Ge, L., Meng, W., Zhou, H., & Bhowmick, N. (2010). Could stroma contribute to field cancerization? Med Hypotheses, 75(1), 26-31. doi: 10.1016/j.mehy.2010.01.019
    Hu, B., Castillo, E., Harewood, L., Ostano, P., Reymond, A., Dummer, R., . . . Dotto, G. P. (2012). Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell, 149(6), 1207-1220. doi: 10.1016/j.cell.2012.03.048
    Khanna, J. N., & Andrade, N. N. (1995). Oral submucous fibrosis: a new concept in surgical management. Report of 100 cases. Int J Oral Maxillofac Surg, 24(6), 433-439.
    Liao, C. T., Wallace, C. G., Lee, L. Y., Hsueh, C., Lin, C. Y., Fan, K. H., . . . Yen, T. C. (2014). Clinical evidence of field cancerization in patients with oral cavity cancer in a betel quid chewing area. Oral Oncol. doi: 10.1016/j.oraloncology.2014.04.010
    Lim, K. P., Cirillo, N., Hassona, Y., Wei, W., Thurlow, J. K., Cheong, S. C., . . . Prime, S. S. (2011). Fibroblast gene expression profile reflects the stage of tumour progression in oral squamous cell carcinoma. J Pathol, 223(4), 459-469. doi: 10.1002/path.2841
    Marsh, D., Suchak, K., Moutasim, K. A., Vallath, S., Hopper, C., Jerjes, W., . . . Thomas, G. J. (2011). Stromal features are predictive of disease mortality in oral cancer patients. J Pathol, 223(4), 470-481. doi: 10.1002/path.2830
    Mueller, M. M., & Fusenig, N. E. (2004). Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 4(11), 839-849. doi: 10.1038/nrc1477
    Murti, P. R., Bhonsle, R. B., Pindborg, J. J., Daftary, D. K., Gupta, P. C., & Mehta, F. S. (1985). Malignant transformation rate in oral submucous fibrosis over a 17-year period. Community Dent Oral Epidemiol, 13(6), 340-341.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev, 8(2), 98-101.
    Pindborg, J. J., Murti, P. R., Bhonsle, R. B., Gupta, P. C., Daftary, D. K., & Mehta, F. S. (1984). Oral submucous fibrosis as a precancerous condition. Scand J Dent Res, 92(3), 224-229.
    Rajalalitha, P., & Vali, S. (2005). Molecular pathogenesis of oral submucous fibrosis--a collagen metabolic disorder. J Oral Pathol Med, 34(6), 321-328. doi: 10.1111/j.1600-0714.2005.00325.x
    Slaughter, D. P., Southwick, H. W., & Smejkal, W. (1953). “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer, 6(5), 963-968. doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q
    Tabor, M. P., Brakenhoff, R. H., van Houten, V. M., Kummer, J. A., Snel, M. H., Snijders, P. J., . . . Braakhuis, B. J. (2001). Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res, 7(6), 1523-1532.
    Welfare, M. o. H. a. (2014). <民國102年主要死因分析.pdf>. DOH.
    Wong, D. Y., Chang, K. W., Chen, C. F., & Chang, R. C. (1990). Characterization of two new cell lines derived from oral cavity human squamous cell carcinomas--OC1 and OC2. J Oral Maxillofac Surg, 48(4), 385-390.

    無法下載圖示 校內:2019-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE