簡易檢索 / 詳目顯示

研究生: 曹勝傑
Tsao, Sheng-Chieh
論文名稱: 「活塞式蓋板與儲水容器」動力特性之數值研究
Numerical Study on the Dynamical Behavior of Water Tanks with Piston-typed.Covering
指導教授: 丁舜臣
Ting, Shuenn-Chern
唐啟釗
Tang, Chii-Jau
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 貼壁格網隔間水槽阻尼器圓柱體壓力分佈
外文關鍵詞: Boundary-Fitted Coordinate System, Distribution of Pressure Around a Circular Cylin, Partitioned Tank Damper
相關次數: 點閱:213下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隔間水槽阻尼器(Partitioned Tank Damper,PTD)為一矩形水槽中央垂直設置具有固定開度隔板的液體阻尼器。為了分析方便,兩槽液面加入兩單自由度活塞運動的浮蓋板。本文著重於研究PTD的活塞式蓋板作上下簡諧運動時,內部液體的動壓力分佈。
    本文以數值模擬方式研究PTD內部壓力問題。數值方法採用貼壁座標格網,流場方程式推導為流函數-渦度模式,以有限解析法離散,求解內部流場的流函數、渦度及壓力等變數,並使用對角矩陣法與超鬆弛收斂法加快計算速度。使用均勻流通過圓柱問題作為模式測試工具,檢驗流場與壓力的精確性。
    數值計算結果之驗證,採用均勻流通過圓柱模式測試。流函數測試結果大致與前人實驗照片結果吻合。壓力計算方面,本文測試不同控制方程式與不同邊界條件,並繪出所計算之圓柱表面壓力係數結果,並由圓柱各角度的Q值剖面線,檢查流場渦度與Q值之關係。由於使用不同理論獲致結果有很大差異,本文僅列出這些比較結果,以供後續研究參考。
    PTD內部流場問題,先不考慮黏性進行計算,並討論PTD內部在不同時間的壓力分佈。依照外力平衡的觀點,檢驗壓力梯度(即作用力)與流體慣性力之平衡關係。至於考慮流體黏性之計算,先討論流函數、渦度的計算結果,並依上述圓柱流方式進行結果分析,並列出不同計算條件之結果,以供後續研究參考。

    Partitioned Tank Damper (PTD) is a rectangular liquid tank damper equipped with a fixed opening partition board in the middle. In order to analyse this damper system conveniently, we put two single degree additional piston-typed plates floating freely on the liquid surface of the tank. This thesis attempts to investigate the distribution of hydrodynamic pressure on the PTD walls by numerical analysis.
    This thesis utilizes numerical matched to analyse the hydrodynamic pressure inside a PTD. The numerical model is based on the stream function and vorticity formulation, and is treated by the finite analytic discretization method in a transient boundary fitted coordinate system. The stream function, vorticity and pressure are solved by tridiagonal matrix algorithm. In order to accelerate the convergent rate of numerical solution, the successive over-relaxation technique is also applied.
    For the numerical validation, we first test the problem of a uniform flow passing a fixed circular cylinder at Re=26. The result of the calculated streamline is consistent well with the observation in other’s experiment. On the calculated pressure field, this study testifies various governing equations and boundary condition to illustrate their results of the surface pressure coefficients. It is found that these results obtained from different methods have large deviation among one another. The justification within these results is rather difficult in the present study to make a definite suggestion, but, instead, more future investigations are necessarily requested for this goal.
    For the PTD flow field, this thesis first presents inviscid flow solution of evolved pressure distribution. To follow the force-momentum law, the relation of calculated pressure gradient (i.e., pressure force) balanced with the inertia of fluid is also checked. For viscous flow calculation, the results of streamlines, vorticity and pressure are discussed. As discussed in the circular cylinder flow, the present study just lies different calculated results of pressure field hopefully as references for continued researches without further recommendations.

    中文摘要 i 英文摘要 ii 誌謝 iii 目 錄 iv 圖目錄 vi 符號說明 ix 第一章 緒 論 1  1.1 研究動機 1  1.2 文獻回顧 2  1.3 研究方法 3  1.4 本文架構 4 第二章 相關理論 6  2.1 流場方程式 6  2.2 初始與邊界條件 9 第三章 數值方法 13  3.1 格網生成 13  3.2 座標轉換 14  3.3 邊界條件離散法 16  3.4 內部流場離散方法 19   3.4.1 流函數與壓力控制方程式的離散方法 21   3.4.2 渦度控制方程式的離散方法 21  3.5 三對角矩陣法 22  3.6 超鬆弛收斂法 23  3.7 計算流程 24 第四章 結果與討論 26  4.1 圓柱流場問題數值計算結果 26   4.1.1 流函數與渦度計算結果 26   4.1.2 Bernoulli函數Q與壓力P計算結果 28  4.2 PTD問題數值計算結果 30   4.2.1 PTD低雷諾數計算結果 30   4.2.2 PTD高雷諾數計算結果 37 第五章 結論與建議 40  5.1 結 論 40  5.2 建 議 41 參考文獻 42 附 錄 44

    1. Tamura, Y., Fujii, K., Sato, T., Wakahara, T., and Kosugi, M., (1988), “Wind-Induced Vibration of Tall Towers and Practical Applications of Tuned Sloshing Damper, ” Proceedings, Workshop on Serviceability of Buildings, Ottawa, Ontario, Canada, pp.228-241
    2. Wakahara, T., Ohyama, T., and Fujii, K., (1991), “Wind Response Analysis of TLD Structure System Considering Nonlinearity of Liquid Motion, ” Journal of Structural Construction Engineering, AIJ, No.426, pp.79-88
    3. Fujino, Y., Pacheco, B.M., Chaiseri, P., and Fujii, K., (1988a), “An Experimental Study on Tuned Liquid Damper Using Circular Containers, ” JSCE Journal of Structural Engineering, Vol.34A, pp.603-616
    4. Fujino, Y., Pacheco, B.M., Chaiseri, P., and Sun, L.M., (1988b), “Parametric Studies on Tuned Liquid Damper (TLD) Using Circular Containers by Free-Oscillation Experiments, ” Structural Engineering/Earthquake Engineering, JSCE, No.398/I-10, Vol.5, No.2, pp.381s-391s
    5. Noji, T., Yoshida, H., Tatsum, E., Kosaka, H., and Haguida, H., (1988), “Study on Vibration Control Damper Utilizing Sloshing of Water, ” Journal of Wind Engineering, No.37, pp.557-566
    6. Noji, T., Yoshida, H., Tatsum, E., Kosaka, H., and Haguida, H., (1990), “Study of Water-Sloshing Vibration Control Damper, ” Journal of Structural Construction of Engineering, AIJ, No.411, pp.97-105
    7. Nakagaki, K., Arima, K., Ueda, T., and Kakou, H., (1990), “On Natural Vibration and Damping Effect of Tuned Sloshing Damper, ” JSCE Journal of Structural Engineering, Vol.36A, pp.591-602
    8. Gardarsoon, S., Yeh, H., and Reed, D., (2001), “Behavior of Sloped Bottom Tuned Liquid Dampers, ” J. Eng. Mech. ASCE 127, pp.266-271
    9. S.J., Li, G.Q., Li, J., Tang, and Q.S., Li, (2002), “Shallow Rectangular TLD for Structural Control Implementation, ” Applied Acoustics, Vol.63, Issue:10, pp.1125-1135
    10. Sakai, F., Takaeda, S., and Tamaki, T., (1989), “Tuned Liquid Column Damper : New Type Device for Suppression of Building Vibration, ” Proceeding International Conference on High Rise Building, Nanjing, China, pp.926-931
    11. Won, A.Y.J., Piers, J.A., and Haroun, M.A., (1996), “Stochastic Seismic Performance Evaluation of Tuned Liquid Column Dampers, ” Earthquake Engineering and Structural Dynamics, 25, pp.1259-1274
    12. Gao, H., Kwok, K.C.S., and Samali, B., (1997), “Optimization of Tuned Liquid Column Dampers, ” Engineering Structures, Vol.19, N.6, pp.476-486
    13. Xue, S.D., Ko, J.M., and Xu, Y.L., (2000), “Tuned Liquid Column Damper for Supressing Pitching Motion of Structires, ” Engineering Structures, Vol.23, pp.1538-1551
    14. 林威宏(1998),『含流動液體之阻尼器對結構的減振效應』,國立成功大學碩士論文,民國87年6月
    15. 曾申融(2000),『「浮蓋板與儲水槽」動力特性之試驗研究』,國立成功大學碩士論文,民國89年6月
    16. 李國彰(2000),『「孔口式調諧液柱阻尼器」孔口開度對結構減振之效應』,國立成功大學碩士論文,民國89年6月
    17. 黃勝宏(2002),『「隔間容器阻尼器」動力特性之試驗研究』,國立成功大學碩士論文,民國91年6月
    18. 蘇建瑋(2003),『「主動式隔間水槽阻尼器」操控模式對結構減振之效應』,國立成功大學碩士論文,民國92年5月
    19. 廖建能(2003),『「隔間水槽阻尼器」操控參數對結構減振之效應』,國立成功大學碩士論文,民國92年6月
    20. 王國慶(2005),『「主動式隔間水槽阻尼器」於雙層結構系統的減振效應』,國立成功大學碩士論文,民國94年6月
    21. 洪佑昇(2005),『「浮蓋板與儲水容器」動力特性之數值分析』,國立成功大學碩士論文,民國94年6月

    下載圖示 校內:立即公開
    校外:2008-01-22公開
    QR CODE