簡易檢索 / 詳目顯示

研究生: 潘宗龍
Pan, Chung-Long
論文名稱: MgTiO3介電陶瓷材料及微波應用之研究
Study of MgTiO3 Dielectric Ceramics and Applications at Microwave Frequencies
指導教授: 魏炯權
Wei, Chung-Chuang
黃正亮
Huang, Cheng-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 102
中文關鍵詞: 高Q值薄膜濾波器介電陶瓷
外文關鍵詞: thin film, high-Q, dielectric ceramics, filter
相關次數: 點閱:83下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   微波介電共振器,具有高介電常數,低溫度飄移係數及高品質因數等特性,極適合應用於微波類比電路元件。本論文主要在於研發應用於微波類比電路中之介電共振器及濾波器,並將論文分成兩大研究方向:
     一、 微波介電陶瓷之研發及備製:
      (a) 以傳統配粉法混合配製的MgTiO3-CaTiO3具有約21的 值,而f×Q值有56000 (7 GHz), =0 ppm/℃;但其燒結溫度為1400℃,嘗試在MgTiO3-CaTiO3中加入不同的燒結輔助劑(Bi2O3、CuO、V2O5)以達到液相燒結的目的。
      (b) 嘗試著開發具更高Q值的鈦鐵礦系統,利用Co部分取代Mg原子,可得具更佳微波特性的(Mg0.95Co0.05)TiO3,並加入正溫度係數的陶瓷,以求得一個適合在微波頻段使用的陶瓷材料。
      (c) 在傳統配粉方法外,嘗試利用真空技術完成介電材料的製備。在此利用射頻磁控濺鍍系統進行MgTiO3薄膜的製作,在不同製程參數下,製作高品質之介電薄膜,並進行物理與電性特性之分析。
     二、射頻前端元件之設計、分析與實作
    以第一部份完成之MgTiO3材料系統為基板,設計、分析並研製了適用於微波通訊系統中的雙頻帶濾波器,其中包含了設計的基本考量,製程觀念和測試

      Due to the rapid developments of mobile communication, mobile telephone systems, and satellite broadcasting systems in recent years, how to design high-quality devices applied in analog circuits is one of the most important issues. There are two primary branches in this research. One part is to develop the dielectric ceramic systems that exhibit great dielectric properties. The other part is to design and realize the multilayer dielectric filters.

     1. Study and fabrications of microwave dielectric resonators
    (a) Magnesium titanate (MgTiO3) ceramics is a popular dielectric material applied at microwave frequency. With the Mg:Ca ratio of approximately 95:5, MgTiO3-CaTiO3 ceramics gives ~21, Q ~8000 at 7 GHz, and a zeroτf value. It has found many applications in microwave systems such as in temperature-compensating-type capacitors, resonators and antennas. However, the sintering temperatures for al cases were as high as 1350 ~ 1450℃. In this thesis, the effect of Bi2O3, CuO and V2O5 addition on the sintering temperatures of MgTiO3-CaTiO3 ceramics has been investigated.
    (b) With partial replacement of Mg by Co in MgTiO3, the (Mg0.95Co0.05)TiO3 ceramics also having an ilmenite-type structure was reported to possess excellent dielectric properties with an value~ 16.8, a Q×f value~ 230000 at 10 GHz and aτf value ~ -54 ppm/°C. However, the (Mg0.95Co0.05)TiO3 ceramics has a negativeτf value. Thus, in order to obtain a small temperature coefficients of resonant frequency, the Ca0.6La0.8/3TiO3 was added in the (Mg0.95Co0.05)TiO3 phase.
    (c) Due to thin-film technology has become a major requirement for integration since integrated circuits have been applied in today’s microwave communication system and dynamic random access memories. In this study the electrical and physical properties of MgTiO3 thin films were fabricated by RF magnetron sputtering have been researched. A MgTiO3 target was prepared and used for deposition. MgTiO3 thin films were deposited at different processing parameters. The dependence of the physical and electrical characteristics on RF power, substrate temperature and Ar/O2 ratios were also investigated

     2. Design and construction of microwave ceramics dielectric filters
    An extended configuration of steeped impedance resonators (SIR’s) filter is presented. The parallel stripline sections of SIR’s are coupled electromagnetically and a coupling capacitor is introduced. The creation of an attenuation pole near the passband was derailed. A design procedure for the two pole ectended filter is derived from an analysis using even- and odd- mode impedances. In addition, all of the stripline resonators and tapped I/O lines were arranged in the same layer, it could save the additional layer and simplify the manufacture process owing to its simple structure. Experimental filters were constructed by ceramic lamination technique. They exhibited excellent performances suitable for portable trlrphones.

    Abstract Ⅰ Acknowledgements Ⅳ Contents Ⅴ Table Captions Ⅷ Figure Captions Ⅸ Chapter 1 Introduction 1 Chapter 2 Theory 5 2.1 Theory of Dielectric Ceramics 5 2.2 Analysis of Dielectric Resonator 7 2.3 Thin Film 9 2.4 Analysis of Electrical Properties of Films 10 2-4-1 I-V Characteristic 10 2-4-2 C-V C.aracteristic 12 2.5 Applied to Medium for Transmission Line. 14 2.6 Basic Theories of Microwave Filters 15 Chapter 3 Microwave Dielectric Properties of Ilmenite-Type Titanates with High Q Values 26 3.1 Introduction 26 3.2 Experimental Procedures 28 3.2.1 Sample Preparations 28 3.2.2 Characteristics Analysis and Measurement 29 3.2.2.1 X-Ray and SEM 29 3.2.2.2 Measuring the Density of Bulks 29 3.2.2.3 Measuring the Microwave Dielectric Properties 29 3.3 Results and Discussions 32 3.3.1 0.95MgTiO3-x0.05CaTiO3 with ZnO Additions 32 3.3.2 (1-x)(Mg0.95Co0.05)TiO3-xSrTiO3 System 38 3.4 Conclusion 40 3.4.1 0.95MgTiO3-x0.05CaTiO3 System 40 3.4.2 (Mg0.95Co0.05)TiO3-Ca0.61Nd0.78/3TiO3 System 42 Chapter 4 Structure and Electrical Properties of MgTiO3 Thin Films Deposited By RF Magnetron Sputtering 60 4.1 Introduction 60 4.2 Experimental Procedures 62 4.2.1 Target Fabrication 62 4.2.2 Clean Substrate 63 4.2.3 Deposition Process 63 4.2.4 Analysis of Physical and Chemical Properties of Film 64 4.2.5 Analysis of Electrical Properties of Film 64 4.3 Results and Discussion 65 4.3.1 Crystal Structure of Films 65 4.3.2 Electrical Properties 67 4.4 Conclusions 68 Chapter 5 Dual Band Multilayer Ceramic Planar SIR Microwave Bandpass Filter 76 5.1 Introduction 76 5.2 Stepped Impedance Resonator (SIR) 77 5.2.1 Basic Structure of SIR 77 5.2.2 Resonance Conditions and Resonator Electrical Length 78 5.2.3 Spurious Resonance Frequencies 79 5.2.4 Derivation of an Equivalent Circuit of SIR 80 5.3 Dual-Band Filter Design 82 5.4 Conclusion 85 Chapter 6 Conclusions and Future Work 93 6.1 Conclusions 93 6.2 Future Work 95 References 96

    [1-1] R. D. Richtmyer, Jpn. J. Appl. Phys., 10 (1939) 391.
    [1-2] A. Yamada and K. Sato, Jpn. J. Appl. Phys., 31 (1992) 3148.
    [1-3] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, Mat Res. Bull, 33 (1998) 1261-69.
    [1-4] M. Furuya and A. Ochi, Jpn. J. Appl. Phys., 33 (1994) 5482-87.
    [1-5] O. Renount, J. P. Boilt and F. Chaput, J. Am. Ceram. Soc., 75 (1992) 3337.
    [1-6] S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, J. Am. Ceram. Soc., 79 (1996) 2059.
    [1-7] V. M. Ferreir, F. Azough, I. L. Baptisa and R. Freer, Ferroelectrics, 133 (1992) 127-132.
    [1-8] H. Yamamoto, A. Koga, S. Shibagaki and N. Ichinose, J. Ceram. Soc. Jpn., 106 (1998) 339-343.
    [1-9] C. M. Cheng, C. F. Yang, and S. H. Lo, Jpn. J. Appl. Phyys., 36 L1604..
    [1-10] C. C. Lee and P. Lin, Jpn. J. Appl. Phys., 37 (1998) 6048-6054.
    [1-11] T. Takada, S.F. Wang, and Syoshikawa, S. T. Jang and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 1909.
    [1-12] R. Kudesia, A. E. Mchale and R. L. Snyder, J. Am. Ceram. Soc , 77 (1994) 3215.
    [1-13] K. R. Han, J. W. Jang, S. Y. Cho, D.Y. Jeong and K.S. Hong, J .Am. Ceram. Soc., 81 (1998) 1209.
    [1-14] S. Y. Cho, I. T. Kim and K. S. Hong, J. Mater. Res., 14 (1999) 114.
    [1-15] D. G. Lim, B. H. Kim, T. G. Kim and H. J. Jung, Materials Research Bulletin, 34 (1999) 1577.
    [1-16] C. S. Hsu and C. L. Huang, Mat. Res. Bull., 36 (2001).
    [1-17] Cheng-Liang Huang, et al., Jpn. J. Appl. Phys., 41 (2002) 758.
    [1-18] Cheng-Liang Huang et al., Journal of the European Ceramic Society, 22 (2002) 1693.
    [1-19] Cheng-Liang Huang et al., Jpn. J. Appl. Phys., 38 (1999) 5949.
    [1-20] W. Y. Lin and R. F. Spreyer, J .Am. Ceram. Soc., 82 (1999) 325.
    [1-21] Cheng-Liang Huang a et al., Journal of Materials Science Letters, 19 (2000) 2197.
    [1-22] B. Naylor and A. Cook, J .Am. Ceram. Soc., 68 (1946) 1003.
    [1-23] R. Wyss, Ann. Chim., 3 (1948) 215.
    [1-24] H. Kagata, T. Inoue, J. Kato, and I. Kameyama, Jpn. J. Appl. Phys., 31 (1992), 3152.
    [1-25] H. Kagata, T. Inoue, J. Kato, and I. Kameyama, Ceramic Trans. 32 (1993) 81.
    [2-1] W. D. Kingery, H. K. Bowen And D.R. Uhlmann, Introduction to Ceramics, 2nd Edn, J. Wiley, New York, (1976) 461.
    [2-2] Kajfez and P. Guillon, Dielectric Resonator, Artech House, Massachusetts, (1986) 345.
    [2-3] B. A. Movchan and A. V. Demshishin, Fizika Metal, 28 (1969) 653.
    [2-4] J. A. Thornton, J. Vac. Sci. Technol. A 4, (1986) 3059-3065.
    [2-5] R. C. Ross and R. Messier, J. Appl. Phys., 52 (1981) 5329-5339.
    [2-6] R. Messier and R. C. Ross, J. Appl. Phys., 53 (1982) 6220-5225.
    [2-7] R. Messier and R. C. Ross, J. Vac. Sci. Technol. A 2 (1984) 500-503.
    [2-8] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, ( 1981).
    [2-9] J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectric, Clarendon, Oxford, England, (1973).
    [2-10] P. Li and T. M. Lu, Physical Review, B 43 (1991) 14261-14264.
    [2-11] T. Mihara and H. Watanbe, Jpn. J. Appl. Phys., 34 (1995) 5664.
    [2-12] A. Grove, B. E. Deal, E. H. Show and C. T. Sah, Solid-State Electronics, 18 (1965) 145-163.
    [2-13] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw- Hill Inc., (1994).
    [3-1] K. Wakino, K. Minai, H. Tamura, J. Am. Ceram. Soc., 67 (1984) 278.
    [3-1] S. Nomura, K. Toyama, K. Kaneta, Jpn. J. Appl. Phys., 21 (1982), L624
    [3-3] G. Wolfram, H.E. Gobel, Mater. Res. Bull., 16 (1981),1455.
    [3-4] S. Y. Cho, I. T. Kim, K. S. Hong, J. Mater. Res., 14 (1999), 114.
    [3-5] H. Megaw, Crystal Structures, W.B. Saunders, Philadelphia, (1973) 231.
    [3-6] V. M. Ferreir, F. Azough, I. L. Baptista and R. Freer, Ferroelectric., 133 (1992) 127.
    [3-7] K. Wakino, Ferroelectric, 91 (1989) 69.
    [3-8] T. Kakada, S.F. Wang, S.T. Syoshikawa, Jang, R.E. Newnham, J. Am. Ceram. Soc., 77 (1994) 1909.
    [3-9] T. Kakada, S.F. Wang, S.T. Syoshikawa, Jang, R.E. Newnham, J. Am. Ceram. Soc., 77 (1994) 2485.
    [3-10] S.I. Hirno, Takashi, Hayashi and A. Hattori, J. Am. Ceram. Soc., 74 (1991) 1320.
    [3-11] V. Tolmer, G. Desqardin, J. Am, Ceram. Soc., 80 (1997)1981.
    [3-12] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J. Kim, Jpn. J. Appl. Phys., 33 (1994) 5466.
    [3-13] C. L. Huang, C. L. Pan and J. F. Hsu, Mater. Res. Bull., 37 (2002) 2483.
    [3-14] B. W. Hakki, and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 8 (1960) 402.
    [3-15] W. E. Courtney, IEEE Trans. Microwave Theory Tech. 18 (1970) 476.
    [3-16] M. Pospieszalski, Rozprawy Elektrotechniczne, 22 (1976) 605.
    [3-17] Y.Kobayashi and M. Katoh, IEEE Trans. Microwave Theory Tech. 33 (1985) 586.
    [3-18] Wheless, P. and Kajfez, D., IEEE MTT-S Digest, St. Louis, (1985) 473.
    [3-19] S. Kucheikko, J. W. Choi, H. J. kim and H. J. Jung:, J. Am. Ceram. Soc., 79 (1996) 2739.
    [3-20] W. S. Kim, H. T. Hong, E. S. Kim and K. H. Yoon, Jpn. J. Appl. Phys., 37 (1998) 5367.
    [3-21] B. D. Silverman, Phys. Rev. 125 (1962) 1921.
    [3-22] D. W. Kim, B. Park, J. H. Chung, K. S. Hong, Jpn. J. Appl. Phys., 39 (2000) 2696.
    [3-23] Kucheiko, S., Choi, J. W., kim, H. J. and Jung, H. J., J. Am. Ceram. Soc., 79 2739 (1996)
    [3-24] Sagala, D. A. and Nambu, S., J. Am. Ceram. Soc., 75 2573 (1992).
    [3-25] Wu, L., Yang, C. F. and Wu, T. S., J. Mater. Sci. Materials in Electronics, 3 (1992) 272.
    [3-26] I. S. Kim, w. H. Jung and Y. Inaguma, Mater. Res. Bull. 30 (1995) 307.
    [4-1] S. Nishigaki, H. Kato, S. Yano and R. Kamimure: Am. Ceram. Soc, Bull. 66 (1987) 1405.
    [4-2] K. Wakino, K. Minai and H. Tamura: J. Am. Ceram. Soc. 67 (1984) 278.
    [4-3] T. Takada, S. F. Wang, and S. Yoshikawa, S. J. Yang and R. E. Newnham: J. Am. Ceram. Soc. 77 (1994) 1909.
    [4-4] R. J. Cava, W. F. Peck Jr., J. J. Krajewski, G. L. Reberts and B. P. Barber: Appl. Phys. Lerr. 70 (1997) 1396.
    [4-5] G. C. Ling, R. S. Withers, B. F. Cole and N. Newman: IEEE Trans. Microwave Theory & Tech. 42 (1994) 34.
    [4-6] D. E. Oates and A. C. Anderson: IEEE Trans. Magn. 28 (1991) 867.
    [4-7] Ceramic Engineering Handbook, Ceramic Society of Japan (Gihodo, Tokyo, 1989) p.1885.
    [4-8] k. Wakino: Ferroelectries 91 (1989) 69.
    [4-9] V. M. Ferreir and J. L. Baptista: J. Mat. Res. 12, (1997) 3293.
    [4-10] V. M. Ferreir, F. Azough, I. L. Baptista and R. Freer: Ferroelectric 133 (1992) 127.
    [4-11] S. B. Desu and H. M. O’Bryan: J. Am. Ceram. Soc. 68 (1985) 546.
    [4-12] D.A. Sagada and S. Nambu: J. Am. Ceram. Soc. 75 (1992) 2573.
    [4-13] Y. Syono, S. Akimoro, Y. Ishikawa and Y. Endoh: J. Phys. Chem. Solid 30 (1969) 1665.
    [4-14] J. Zng, H. Wang, S. Song, Q. Zhang, J. Cheng, S. Shang and M. Wang: J. Cryst. Growth 178 (1997) 355.
    [4-15] Lee and C. W. Choi: Jan. J. Appl. Phys. 38 (1999) 3651.
    [4-16] C. W. Choi, Y. U. Kwon, J. Lee, J. Kor. Phys. Soc. 32 (1998) 1417.
    [4-17] P. Bhattacharya, T. Komeda, K. Park and Y. Nishioika: Jan. J. Appl. Phys. 32 (1998) 4103.
    [5-1] Cheng-Chyi You, Cheng-Liang Huang, and Chung-Chuang Wei, Microwave Journal, 37 (1994) 24-35.
    [5-2] Seymour B.Cohn, IRE Trans. Microwave Theory Tech., (1958) 223-231.
    [5-3] M.Makimoto, and S.Yamashita, IEEE Trans. Microwave Theory Tech., MTT-28 (1980) 1413-1417.
    [5-4] G.L.Matthaei, IEEE Trans. Microwave Theory Tech., MTT–10 (1962) 479-491.
    [5-5] S.Caspi and J.Adelman, , IEEE Trans. Microwave Theory Tech., MTT–36 (1988) 759-763.
    [5-6] G.L.Matthaei, IEEE Trans. Microwave Theory Tech., MTT-6 (1963) 82-91.
    [5-7] J.A.G. Malherbe, Microwave Transmission Line, Artech House, INC., (1979).
    [5-8] Ulrich H.Gysel, IEEE Trans. Microwave Theory Tech., MTT-22 (1974) 523-531.
    [5-9] J. S. Hong and M. J. Lancaster, “Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters”, IEEE Trans. Microwave Theory Tech., vol. MTT-45 (1997).
    [5-10] M. Makimoto and S. Yamashita, Proc. IEEE, 67 (1979) 16-19.
    [5-11] M. Makimoto and S. Yamashita, IEEE Trans. Microwave Theory Tech., 28 (1980) 1413-1417.
    [5-12] T. Ishizaki, M. Fujita, H. Kagata, T. Uwano and H. Miyake, IEEE Trans. Microwave Theory Tech.,42 (1994) 2017-2022.
    [5-13] T. Ishizaki and T. Uwano, IEEE MTT-S Digest, WE1C-4 (1994) 617-620.
    [5-14] C.-L. Huang and H.-S. Hsueh, Microwave Opt. Tech. Lett., 24 (2000) 258-260.
    [5-15] M.Makimoto, and S.Yamashita, IEEE Trans. Microwave Theory Tech., MTT-45 (1980) 1078.

    下載圖示 校內:2005-07-09公開
    校外:2005-07-09公開
    QR CODE