| 研究生: |
侯幃軒 Hou, Wei-Hsuan |
|---|---|
| 論文名稱: |
以原子層沉積系統研製HfxAl1-xO/Al2O3雙層薄膜結構應用於AlGaN/GaN高電子移動率電晶體之閘極介電層 An Investigation of Atomic Layer Deposition-derived HfxAl1-xO/Al2O3 Bilayer Thin Film Structure and Its Application in the Gate Dielectric of AlGaN/GaN High Electron Mobility Transistor |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 原子層沉積 、二氧化鉿 、氧化鋁 、氧化鉿鋁 、high-k 、第三代半導體 、三元化合物 、高電子移動率電晶體 |
| 外文關鍵詞: | Atomic Layer Deposition, Hafnium oxide, Aluminum oxide, HfAlO, High-K, Ternary Composite, 3rd Generation Semiconductor, HEMT |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究共分為兩部分,第一步分為使用原子層沉積系統(Atomic Layer Deposition)分別沉積單層20奈米二氧化鉿薄膜與氧化鋁薄膜,並以氧化鉿為基底,摻雜氧化鋁去做元素比例調變,藉由調變二氧化鉿(m)/氧化鋁(n)之ALD cycle數,可得到不同鋁含量之HfxAl1-xO薄膜。當m/n比例為(1/1)、(3/1)、(5/1)時,可得到分別為Hf0.36Al0.64O、Hf0.63Al0.37O與Hf0.79Al0.21O之三元化合物薄膜。由原子力顯微鏡量測結果顯示,摻雜氧化鋁進氧化鉿中可改善表面粗糙度,雖介電常數會隨鋁成分提高而有所降低,但Hf0.63Al0.37O之介電常數仍保有約19。而相較於純二氧化鉿薄膜,鋁摻雜可將抗結晶溫度由400度提升至800度,使其具有更佳之熱穩定性。而為了瞭解退火後對材料之影響,300度氮氣中退火5分鐘之材料被研製,並使用XPS分析,可得氧空缺由原先的14.9%下降至8.6%,鉿鋁元素與氧則有更好的鍵結。鋁含量過高之HfxAl1-xO薄膜,反而因鉿原子與鋁原子間之大小差異,在薄膜成長時產生懸浮鍵(dangling bond),進而形成漏電路徑,故後續之實驗將採用(3/1)之HfAlO作為閘極介電層。第二部分為將上述之薄膜應用於AlGaN/GaN高電子移動率電晶體之閘極介電層,以元件電性而言,最佳比例之薄膜為Al2O3/Hf0.63Al0.37O雙層薄膜,其所製金氧半高電子移動率電晶體之臨界電壓為-7.95V,次臨界擺幅為97.19 mV/decade,電流開關比為4.53×1010,閘極漏電流為1.27×10-13 A,最大輸出電流為633.8 mA/mm,閘極電壓擺幅為3.8 V。
In this work, 20nm HfO2 and Al2O3 films were deposited by atomic layer deposition system (ALD). Based on hafnium dioxide, alumina is doped to alter the element ratio. By modulating the ALD cycle of (HfO2)m/(Al2O3)n, , HfxAl1-xO thin films with different hafnium-aluminum ratios can be obtained. When the proportion m to n is (1/1), (3/1) and (5/1), we can obtain the Hf0.36Al0.64O, Hf0.63Al0.37O and Hf0.79Al0.21O ternary composites. After the measurement by AFM, the result displayed that alumina incorporation into HfO2 can improve surface roughness. Although the dielectric constant will decrease as the aluminum composition increases, the k-value of Hf0.63Al0.37O still remains about 19. With the alumina incorporation, the crystallization temperature is improved from 400 ºC to 800 ºC, significantly. To understand the impact of annealing on the material, samples annealed in nitrogen at 300 ºC for 5 minutes were prepared and analyzed using XPS. The analysis revealed that oxygen vacancies decreased from 14.9% initially to 8.6%. Additionally, there was improved bonding between hafnium and aluminum with oxygen. Also, the conduction band offset to GaN is increased. Finally, we deposited the HfAlO as the gate dielectric of metal oxide semiconductor high electron mobility transistors. The MOS-HEMT with (5/15 nm) ALD Al2O3/Hf0.63Al0.37O gate dielectric exhibited a Vth of -7.95, a SS of 97.19 mV/decade, an on/off current ratio of 4.53×1010, a max transconductance of 81 mS, a max drain current of 633.8 mA/mm, a gate leakage current of 1.27×10-13 A, a GVS of 3.8 V. Compared with the conventional schottky HEMT, the gate leakage current is reduced by 5 orders when the gate dielectric layer is added.
[1] U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu, "GaN-based RF power devices and amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008.
[2] T. Palacios, "Beyond the AlGaN/GaN HEMT: new concepts for high‐speed transistors," physica status solidi (a), vol. 206, no. 6, pp. 1145-1148, 2009.
[3] C. Langpoklakpam et al., "Review of silicon carbide processing for power MOSFET," Crystals, vol. 12, no. 2, p. 245, 2022.
[4] J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports on progress in Physics, vol. 69, no. 2, p. 327, 2005.
[5] 李振寧, "以原子層沉積系統研製 TixAl1-xO 高介電係數之三元化合物薄膜並應用於氧化銦鎵鋅薄膜電晶體之閘極介電層," 2023.
[6] J. D. Plummer and P. B. Griffin, "Material and process limits in silicon VLSI technology," Proceedings of the IEEE, vol. 89, no. 3, pp. 240-258, 2001.
[7] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 3, pp. 1785-1791, 2000.
[8] J. Robertson and C. Chen, "Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate," Applied Physics Letters, vol. 74, no. 8, pp. 1168-1170, 1999.
[9] P. Fernandes Paes Pinto Rocha, L. Vauche, P. Pimenta-Barros, S. Ruel, R. Escoffier, and J. Buckley, "Recent developments and prospects of fully recessed MIS gate structures for GaN on Si power transistors," Energies, vol. 16, no. 7, p. 2978, 2023.
[10] T.-M. Pan, F.-H. Chen, and M.-N. Hung, "Effect of annealing temperature on structural and electrical properties of high-κ YbTixOy gate dielectrics for InGaZnO thin film transistors," Semiconductor Science and Technology, vol. 30, no. 1, p. 015004, 2014.
[11] A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian, "2001 technology roadmap for semiconductors," Computer, vol. 35, no. 1, pp. 42-53, 2002.
[12] R. M. Wallace and G. Wilk, "Alternative gate dielectrics for microelectronics," Mrs Bulletin, vol. 27, no. 3, pp. 186-191, 2002.
[13] J. Choi, Y. Mao, and J. Chang, "Development of hafnium based high-k materials—A review," Materials Science and Engineering: R: Reports, vol. 72, no. 6, pp. 97-136, 2011.
[14] K. Karavaev, "In-situ atomic layer deposition growth of Hf-oxide," 2010.
[15] 賴彥霖, "氮化銦鎵 (類量子點)/氮化鎵多重量子井之微結構與光學性質之研究," 2006.
[16] H.-L. Yu, "氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析," National Central University, 2009.
[17] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," Journal of applied physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[18] E. Yu, X. Dang, P. Asbeck, S. Lau, and G. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, no. 4, pp. 1742-1749, 1999.
[19] T. Yamanaka, K. Sun, Y. Li, M. Dutta, and M. A. Stroscio, "Spontaneous polarizations, electrical properties, and phononic properties of GaN nanostructures and systems," in Gallium Nitride Materials and Devices II, 2007, vol. 6473: SPIE, pp. 126-139.
[20] D. R. Lide, CRC handbook of chemistry and physics. CRC press, 2004.
[21] A. Vertiatchikh, E. Kaminsky, J. Teetsov, and K. Robinson, "Structural properties of alloyed Ti/Al/Ti/Au and Ti/Al/Mo/Au ohmic contacts to AlGaN/GaN," Solid-State Electronics, vol. 50, no. 7-8, pp. 1425-1429, 2006.
[22] 洪瑞宏, "氮化鋁鎵/氮化鎵金氧半高電子遷移率場效電晶體之製作與特性研究," 2013.
[23] S. Jain, "Measurement of threshold voltage and channel length of submicron MOSFETs," IEE Proceedings I (Solid-State and Electron Devices), vol. 135, no. 6, pp. 162-164, 1988.
[24] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics reliability, vol. 42, no. 4-5, pp. 583-596, 2002.
[25] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
[26] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, "Pentacene-thin film transistors with ZrO2 gate dielectric layers deposited by plasma-enhanced atomic layer deposition," Electrochemical and solid-state letters, vol. 10, no. 3, p. H90, 2007.
[27] M. Leskelä and M. Ritala, "Atomic layer deposition chemistry: recent developments and future challenges," Angewandte Chemie International Edition, vol. 42, no. 45, pp. 5548-5554, 2003.
[28] G. N. Parsons, S. M. George, and M. Knez, "Progress and future directions for atomic layer deposition and ALD-based chemistry," Mrs Bulletin, vol. 36, no. 11, pp. 865-871, 2011.
[29] A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, and M. Ijaz, "Interfaces and surfaces," Chemistry of Nanomaterials, vol. 51, p. 87, 2020.
[30] V. M. Donnelly and A. Kornblit, "Plasma etching: Yesterday, today, and tomorrow," Journal of Vacuum Science & Technology A, vol. 31, no. 5, 2013.
[31] S. I. Cho, H. K. Park, S. An, and S. J. Hong, "Plasma Ion Bombardment Induced Heat Flux on the Wafer Surface in Inductively Coupled Plasma Reactive Ion Etch," Applied Sciences, vol. 13, no. 17, p. 9533, 2023.
[32] M. A. Butt, "Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness—A brief exploration," Coatings, vol. 12, no. 8, p. 1115, 2022.
[33] X. Hu, "Photolithography technology in electronic fabrication," in 2015 International Power, Electronics and Materials Engineering Conference, 2015: Atlantis Press, pp. 843-850.
[34] D. Kubacka, Y. M. Eggeler, N. Volz, S. Neumeier, and E. Spiecker, "Using rapid thermal annealing for studying early stages of high-temperature oxidation of superalloys," in Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys, 2020: Springer, pp. 763-770.
校內:2029-08-09公開