| 研究生: |
林瑞霖 Lin, Ruei-Lin |
|---|---|
| 論文名稱: |
鎳銅鋅鐵氧磁體-六方晶系鐵氧磁體複合材料之燒結行為與磁性質之研究 A study on the microstructure and magnetic properties of NiCuZn-hexagonal ferrite composites |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | NiCuZn鐵氧磁體 、Snoek’s limit 、六方晶型鐵氧磁體 、高初導磁係數 、高截止頻率 |
| 外文關鍵詞: | NiCuZn ferrites, Snoek’s limit, hexagonal ferrites, high initial permeability, high frequency applications |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,通訊裝置快速蓬勃發展,高頻通訊市場之需求因此提高,而傳統使用之NiCuZn鐵氧磁體,因受限於Snoek’s limit限制則多改採用六方晶型鐵氧磁體為主,但六方晶型之燒結溫度ㄧ般均在1200℃以上,需藉由添加助燒結劑鉍錋鋅矽玻璃後,才可使燒結溫度降低到900℃左右,但其初導磁係數(μ’)卻急速劣化,因此開發出具有較高初導磁係數、高截止頻率之複合鐵氧磁體材料變得相當重要。本研究先由添加兩種不同六方晶型鐵氧磁體(Co2Y/BaM)於鎳銅鋅鐵氧磁體中,經950℃持溫兩個小時燒結條件下,探討Co2Y與BaM混合鎳銅鋅鐵氧磁體後之磁性質與顯微結構之差異,實驗結果發現,經950℃持溫兩個小時燒結條件下,皆不會產生二次相,且隨著Co2Y添加量的增加(0~5wt%),其截止頻率可以從10MHz延後到100MHz左右,且耐流量明顯提高;但隨著BaM添加量的增加,卻會產生固溶的現象,降低燒結品質,使緻密度嚴重劣化。因此本研究擬藉由添加鎳銅鋅鐵氧磁體於六方晶系Co2Y鐵氧磁體中,並探討不同鎳銅鋅鐵氧磁體添加量對Co2Y鐵氧磁體之磁性質與顯微結構之影響。研究結果顯示添加鎳銅鋅鐵氧磁體粉末於Co2Y鐵氧磁體中之樣品經950℃燒結後均不會產生二次相,且微量添加鎳銅鋅鐵氧磁體不僅可以促進燒結,使燒結溫度降低到850℃,並可有效提升初導磁係數。而初導磁係數隨著鎳銅鋅鐵氧磁體添加量的增加而上升,當鎳銅鋅鐵氧磁體添加量達到20wt%時,可使經950℃燒結後之樣品其初導磁係數維持在5左右(1M~1GHz)。
Magneto-plumbite ferrites with hexagonal structures have revealed a higher dispersion frequency than NiCuZn ferrites, which can be used in high frequency applications. Among those ferrites, the Co2Y ferrite 2(BaO).2(CoO).6(Fe2O3) has good magnetic properties (such as permeability and quality factors) above 200MHz. However, the densification temperature of Co2Y ferrites always exceeds 1000oC and the initial permeability of low temperature fired Co2Y ferrites with glass addition is too low (μi = 2-4), which limit its application in multilayer chip inductors. Improved the densification at low temperatures can be achieved by adding glass flux. However, the glass addition often results in magnetic properties degradation due to the low-permeability additive dilution effect or the chemical reaction between the glass and ferrites to form a low-permeability phase. In this study, the magnetic properties of low temperature sintering Co2Y ferrite can be improved by adding nickel- copper- zinc (NiCuZn) ferrites, and investigated the effect of the addition of NiCuZn ferrites on the magnetic properties and microstructure of Co2Y.
The results show that no second phase was observed for the Co2Y- NiCuZn ferrite composite sintering at 900°C and the densification temperature can not only be reduced to 850oC, but also can effectively enhance the initial permeability by adding trace addition of nickel-copper-zinc ferrites. The initial permeability increased with increasing the addition of the NiCuZn ferrite. When the NiCuZn ferrites addition was up to 20wt%, the initial permeability of 4-5 (1MHz- 1 GHz) could be obtained for the Co2Y- NiCuZn ferrite composite sintering at 900°C.
[1] Chul Won Kim ,Jae Gui Koh, “A study of synthesis of NiCuZn-ferrite sintering in low temperature by metal nitrates and its electromagnetic property, ” Journal of Magnetism and Magnetic Materials,257,355-368(2003).
[2] 劉向春,「ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究」,西北工業大學,博士論文 (2006).
[3] Nakamura,Tatsuya,“Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites, ” Journals & Magazines,88, 348 – 353(2000).
[4] Yang Bai,Ji Zhou, Zhilun Gui,Longtu Li, “An investigation of the magnetic properties of Co2Y hexaferrite, Materials Letters, ”57, 807 – 811(2002).
[5] 柯文雄,「晶片型電子陶瓷材料及元件技術」,工業技術研究院 (1993).
[6] 山口喬,柳田博明,剛本祥一,近桂一郎,「磁性陶瓷」,黃忠良譯,復漢出版社,台灣 (2001) .
[7] 王志方,「 LTCC 產業概況」,IBT 台灣工商銀行研究中心 (2008) .
[8] 姚壬謙,「化學共沉法製備Co2Z 鐵氧磁體粉末之生成機構研究」,國立成功大學資源工程研究所,碩士論文 (2004) .
[9] S. Chikazumi, “Physics of Ferromagnetism, ” 2nd Ed., Oxford University Press Inc.,New York(1997) .
[10] M. D. Kingery, D.R. Uhlmann, et al, “Introduction to ceramics,” 2nd Edition, John Wiley & Sons, New York, (1976) .
[11] 金重勳,「磁性技術手冊」,中華民國磁性技術協會 (2002).
[12] K. Sun, Z. W. Lan, Z. Yu, L. Z. Li, J. M. Huang and X. N. Zhao, “Grain Growth, Densification and Magnetic Properties of NiZn Ferrites with Bi2O3 Additive,” Journal of Physics D-Applied Physics, 41 [23] 235002 (2008).
[13] Alex Goldman, “Modern ferrite technology, ” Spring, NY (2006) .
[14] Raul Valenzuela, “ Magnetic ceramics, Cambridge University Press, ” NY (1994) .
[15] 陳皇均,「陶瓷材料概論下」,曉園出版社(1992).
[16] 楊朝偉,「巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留」,國立成功大學材料科學及工程研究所,碩士論文(2006) .
[17] 李廷濬,「氧化鉛-氧化銅玻璃添加劑對Co2Z 六方晶系鐵氧磁體燒結及磁性質影響之研究」,義守大學材料科學與工程研究所,碩士論文(2004) .
[18] S. H. Gee, Y. K. Hong, I. T. Nam, C. Weatherspoon, A. Lyle, and J. C. Sur,“Ba3Co0.8Zn1.2Fe24O41 (Co2Z-Type) Hexaferrite Particles for LTCC Substrates, ” IEEE Trans. Magn., 42, 2843-5(2006).
[19] X.H. Wang, T.L. Ren, L.T. Li, Z.L. Gui, S.Y. Su, Z.X. Yue, and J. Zhou,“Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrateprecursor mothod, ” J. Magn. Magn. Mater., 234, 255-60(2001).
[20] P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co, ” J. Appl. Physi., 87, 4978~80(2000) .
[21] 康閎竣,「超薄Co膜成長於Pt(111)之表面與磁性的研究」,國立中山大學物理研究所,碩士論文(2007) .
[22] 鄭振東,「實用磁性材料」,全華科技圖書,pp. 2-24~2-28.
[23] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “ Introduction to ceramics, ” 2nd Edition, John Wiley & Sons, New York(1976).
[24] TDK, “Multilayer Chip Inductor MLG0402Q/MLG0603P, ”Tech Journal,2011.
[25] 梅立人,「添加LiF 對CaCu3Ti4O12 的介電、導電和顯微結構的影響」,國立成功大學資源工程研究所,碩士論文(2006).
[26] Yang Bai,Ji Zhou,Bo Li,Zhilun Gui,Longtu Li, “The effect of Bi substitution on phase formation and low temperature sintering of Y-type hexagonal ferrite,” J. Electroceram., 21, 349-352(2008) .
[27] Yang Bai, Ji Zhou, Zhilun Gui, Longtu Li, Lijie Qiao, “The physic properties of Bi-Zn codoped Y-type hexagonal ferrite,” J. Alloys. Comp., 450, 412-416 (2008).
[28] G. H . Hwang, W. Y. Kim, H. J. Jeon, and Y. S. Kim, “Physical properties of barrier ribs of plasma display panels. Part 2. Effects of fillers,” J. Am. Ceram. Soc., 85, 2961-2964 (2002).
[29] G. H . Hwang, W. Y. Kim, H. J. Jeon, and Y. S. Kim , “Physical properties of barrier ribs of plasma display panels. Part I. Formation of pores during sintering of lead borosilicate glass frits,” J. Am. Ceram. Soc., 85, 2956-2960 (2002) .
[30] E. S. Lim, B. S. Kim, and J. H. Lee, “Dielectric , thermal and sintering behavior of BaO-B2O3-SiO2 glasses with the addition of Al2O3,” J. Electroceram., 17,359-363 (2006).
[31] C. S. Lee, J. R. Yoo, K. W. Jung, and S. C. Choi, “Fabrication of Pb free
solder glass for electronic packaging application,” J. Korean. Ceram. Soc., 38,
628-633 (2001).
[32] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and electrical
properties of BaO–B2O3–ZnO glasses,” J. Non-Cryst. Solids., 306, 70-75 (2002) .
[33] R. Clasen, “Preparation of high-purity silica glass by sintering of colloidal
Particles,” Glastech. Ber., 60, 125-132 (1987) .
[34] J. S. Kim and C. I., Cheon, “Crystallization and void formation inZnO–B2O3–SiO2–MgO sintered solder glasses,” J. Mater. Sci., 32,1575-1579 (1997) .
[35] M. O. Pardo and E. D. Zanotto,“Glass sintering with concurrent crystallization,”C. R. Chim., 5, 773-786 (2002) .
[36] L. Zhien, S. Yihui, D. Xijiang, and C. Jijian, “Preparation and crystallization of Ultrafine Li2O-Al2O3-SiO2 powders,” J. Mater. Sci., 30, 390-394 (1995) .
[37] Y. W. Park and B. S. Hyun, “Studies on the sintering of the cordierite
glass–ceramics,” J. Korean. Ceram. Soc., 29, 779-784 (1992) .
[38] 陳泰豪,「低溫共燒型介電-磁性陶瓷複合材料」,國立成功大學資源工程所碩士論文(2007) .
[39] M. Randall, “Liquid phase sintering,”New York (1985) .
[40] M. M. Costa, G. F. M. Pires Junior, A. S. B. Sombra., “Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite Ba2Co2Fe12O22 (Co2Y),” Mater. Chem. Phys., 123, 35-39 (2010) .
[41] R. M. German, “Liquid phase sintering, ”Plenum Press, New York(1985).
[42] 呂秉軍,「離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響」,國立成功大學資源工程所碩士論文(2012).
校內:2018-08-28公開