簡易檢索 / 詳目顯示

研究生: 林瑞霖
Lin, Ruei-Lin
論文名稱: 鎳銅鋅鐵氧磁體-六方晶系鐵氧磁體複合材料之燒結行為與磁性質之研究
A study on the microstructure and magnetic properties of NiCuZn-hexagonal ferrite composites
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: NiCuZn鐵氧磁體Snoek’s limit六方晶型鐵氧磁體高初導磁係數高截止頻率
外文關鍵詞: NiCuZn ferrites, Snoek’s limit, hexagonal ferrites, high initial permeability, high frequency applications
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,通訊裝置快速蓬勃發展,高頻通訊市場之需求因此提高,而傳統使用之NiCuZn鐵氧磁體,因受限於Snoek’s limit限制則多改採用六方晶型鐵氧磁體為主,但六方晶型之燒結溫度ㄧ般均在1200℃以上,需藉由添加助燒結劑鉍錋鋅矽玻璃後,才可使燒結溫度降低到900℃左右,但其初導磁係數(μ’)卻急速劣化,因此開發出具有較高初導磁係數、高截止頻率之複合鐵氧磁體材料變得相當重要。本研究先由添加兩種不同六方晶型鐵氧磁體(Co2Y/BaM)於鎳銅鋅鐵氧磁體中,經950℃持溫兩個小時燒結條件下,探討Co2Y與BaM混合鎳銅鋅鐵氧磁體後之磁性質與顯微結構之差異,實驗結果發現,經950℃持溫兩個小時燒結條件下,皆不會產生二次相,且隨著Co2Y添加量的增加(0~5wt%),其截止頻率可以從10MHz延後到100MHz左右,且耐流量明顯提高;但隨著BaM添加量的增加,卻會產生固溶的現象,降低燒結品質,使緻密度嚴重劣化。因此本研究擬藉由添加鎳銅鋅鐵氧磁體於六方晶系Co2Y鐵氧磁體中,並探討不同鎳銅鋅鐵氧磁體添加量對Co2Y鐵氧磁體之磁性質與顯微結構之影響。研究結果顯示添加鎳銅鋅鐵氧磁體粉末於Co2Y鐵氧磁體中之樣品經950℃燒結後均不會產生二次相,且微量添加鎳銅鋅鐵氧磁體不僅可以促進燒結,使燒結溫度降低到850℃,並可有效提升初導磁係數。而初導磁係數隨著鎳銅鋅鐵氧磁體添加量的增加而上升,當鎳銅鋅鐵氧磁體添加量達到20wt%時,可使經950℃燒結後之樣品其初導磁係數維持在5左右(1M~1GHz)。

    Magneto-plumbite ferrites with hexagonal structures have revealed a higher dispersion frequency than NiCuZn ferrites, which can be used in high frequency applications. Among those ferrites, the Co2Y ferrite 2(BaO).2(CoO).6(Fe2O3) has good magnetic properties (such as permeability and quality factors) above 200MHz. However, the densification temperature of Co2Y ferrites always exceeds 1000oC and the initial permeability of low temperature fired Co2Y ferrites with glass addition is too low (μi = 2-4), which limit its application in multilayer chip inductors. Improved the densification at low temperatures can be achieved by adding glass flux. However, the glass addition often results in magnetic properties degradation due to the low-permeability additive dilution effect or the chemical reaction between the glass and ferrites to form a low-permeability phase. In this study, the magnetic properties of low temperature sintering Co2Y ferrite can be improved by adding nickel- copper- zinc (NiCuZn) ferrites, and investigated the effect of the addition of NiCuZn ferrites on the magnetic properties and microstructure of Co2Y.
    The results show that no second phase was observed for the Co2Y- NiCuZn ferrite composite sintering at 900°C and the densification temperature can not only be reduced to 850oC, but also can effectively enhance the initial permeability by adding trace addition of nickel-copper-zinc ferrites. The initial permeability increased with increasing the addition of the NiCuZn ferrite. When the NiCuZn ferrites addition was up to 20wt%, the initial permeability of 4-5 (1MHz- 1 GHz) could be obtained for the Co2Y- NiCuZn ferrite composite sintering at 900°C.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人文獻與研究 3 2-1 積層電感 3 2-1-1電感之介紹[5] 3 2-2 電感材料 - 鐵氧磁體 5 2-2-1 鐵氧磁體的分類[6] 5 2-2-2高頻六方晶型鐵氧磁體 (Hexagonal Ferrite) 6 2-2-3中低頻尖晶石系鐵氧磁體 8 2-3 鐵氧磁體之磁性質[16] 17 2-3-1 初導磁係數 18 2-3-2磁損失[17] 20 2-3-3 磁異向性[22] 21 2-3-4 磁滯曲線[23] 23 2-4 鐵氧磁體之介電性質[24] 25 2-5 Y相鐵氧磁體與添加劑效果 28 2-6 液相燒結[38] 29 第三章 實驗步驟與方法 38 3-1 起始原料 38 3-2 起始粉末製備 39 3-2-1六方晶系鐵氧磁體製備 39 3-2-2 助燒結劑粉末製備 39 3-3 實驗流程 40 3-3-1鎳銅鋅鐵氧磁體混合M相與Y相六方晶系鐵氧磁體匹配性之比較 40 3-3-2高溫燒結 - 鎳銅鋅鐵氧磁體批覆於Y相鐵氧磁體表面之系統 41 3-3-3低溫燒結 - 鎳銅鋅鐵氧磁體混合Y相鐵氧磁體之系統 42 3-4 材料特性分析 43 3-4-1 熱收縮曲線及體密度分析 43 3-4-2 XRD相鑑定 43 3-4-3 SEM顯微結構分析 44 3-4-4 磁性質分析 44 3-4-5 介電性質分析 44 3-4-6 直流疊加特性分析 44 3-4-7 磁滯曲線分析 44 第四章 結果與討論 45 4-1鎳銅鋅鐵氧磁體混合M相與Y相六方晶系鐵氧磁體匹配性之比較 45 4-1-1 起始原料之相鑑定及熱收縮分析 45 4-1-2 複合材料之結晶相鑑定 49 4-1-3體密度分析 51 4-1-4 SEM顯微結構分析 53 4-1-5 磁性質分析 56 4-1-6 直流疊加特性分析 60 4-1-7 磁滯曲線分析 61 4-2 高溫燒結-鎳銅鋅鐵氧磁體批覆於Y相鐵氧磁體表面之系統 63 4-2-1熱收縮曲線及體密度分析 63 4-2-2 XRD相鑑定及SEM顯微結構分析 65 4-2-3磁性質分析 67 4-3低溫燒結 鎳銅鋅鐵氧磁體混合Y相鐵氧磁體之系統 69 4-3-1 添加助燒結劑BB35SZ後之性質分析 69 4-3-2 複合物之熱收縮行為 72 4-3-3 NiCuZn鐵氧磁體/Co2Y複合材料之結晶相鑑定 74 4-3-4 SEM顯微結構分析 76 4-3-5體密度分析 81 4-3-6磁性質分析 82 4-3-7直流疊加特性分析 88 4-3-8 磁滯曲線分析 89 4-3-9 介電性質分析 91 第五章 結論 93 第六章 參考文獻 94

    [1] Chul Won Kim ,Jae Gui Koh, “A study of synthesis of NiCuZn-ferrite sintering in low temperature by metal nitrates and its electromagnetic property, ” Journal of Magnetism and Magnetic Materials,257,355-368(2003).
    [2] 劉向春,「ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究」,西北工業大學,博士論文 (2006).
    [3] Nakamura,Tatsuya,“Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites, ” Journals & Magazines,88, 348 – 353(2000).
    [4] Yang Bai,Ji Zhou, Zhilun Gui,Longtu Li, “An investigation of the magnetic properties of Co2Y hexaferrite, Materials Letters, ”57, 807 – 811(2002).
    [5] 柯文雄,「晶片型電子陶瓷材料及元件技術」,工業技術研究院 (1993).
    [6] 山口喬,柳田博明,剛本祥一,近桂一郎,「磁性陶瓷」,黃忠良譯,復漢出版社,台灣 (2001) .
    [7] 王志方,「 LTCC 產業概況」,IBT 台灣工商銀行研究中心 (2008) .
    [8] 姚壬謙,「化學共沉法製備Co2Z 鐵氧磁體粉末之生成機構研究」,國立成功大學資源工程研究所,碩士論文 (2004) .
    [9] S. Chikazumi, “Physics of Ferromagnetism, ” 2nd Ed., Oxford University Press Inc.,New York(1997) .
    [10] M. D. Kingery, D.R. Uhlmann, et al, “Introduction to ceramics,” 2nd Edition, John Wiley & Sons, New York, (1976) .
    [11] 金重勳,「磁性技術手冊」,中華民國磁性技術協會 (2002).
    [12] K. Sun, Z. W. Lan, Z. Yu, L. Z. Li, J. M. Huang and X. N. Zhao, “Grain Growth, Densification and Magnetic Properties of NiZn Ferrites with Bi2O3 Additive,” Journal of Physics D-Applied Physics, 41 [23] 235002 (2008).
    [13] Alex Goldman, “Modern ferrite technology, ” Spring, NY (2006) .
    [14] Raul Valenzuela, “ Magnetic ceramics, Cambridge University Press, ” NY (1994) .
    [15] 陳皇均,「陶瓷材料概論下」,曉園出版社(1992).
    [16] 楊朝偉,「巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留」,國立成功大學材料科學及工程研究所,碩士論文(2006) .
    [17] 李廷濬,「氧化鉛-氧化銅玻璃添加劑對Co2Z 六方晶系鐵氧磁體燒結及磁性質影響之研究」,義守大學材料科學與工程研究所,碩士論文(2004) .
    [18] S. H. Gee, Y. K. Hong, I. T. Nam, C. Weatherspoon, A. Lyle, and J. C. Sur,“Ba3Co0.8Zn1.2Fe24O41 (Co2Z-Type) Hexaferrite Particles for LTCC Substrates, ” IEEE Trans. Magn., 42, 2843-5(2006).
    [19] X.H. Wang, T.L. Ren, L.T. Li, Z.L. Gui, S.Y. Su, Z.X. Yue, and J. Zhou,“Synthesis of Cu-modified Co2Z hexaferrite with planar structure by a citrateprecursor mothod, ” J. Magn. Magn. Mater., 234, 255-60(2001).
    [20] P. Lubitz, “New substitution in the hexagonal ferrites to reduce anisotropy without using Co, ” J. Appl. Physi., 87, 4978~80(2000) .
    [21] 康閎竣,「超薄Co膜成長於Pt(111)之表面與磁性的研究」,國立中山大學物理研究所,碩士論文(2007) .
    [22] 鄭振東,「實用磁性材料」,全華科技圖書,pp. 2-24~2-28.
    [23] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “ Introduction to ceramics, ” 2nd Edition, John Wiley & Sons, New York(1976).
    [24] TDK, “Multilayer Chip Inductor MLG0402Q/MLG0603P, ”Tech Journal,2011.
    [25] 梅立人,「添加LiF 對CaCu3Ti4O12 的介電、導電和顯微結構的影響」,國立成功大學資源工程研究所,碩士論文(2006).
    [26] Yang Bai,Ji Zhou,Bo Li,Zhilun Gui,Longtu Li, “The effect of Bi substitution on phase formation and low temperature sintering of Y-type hexagonal ferrite,” J. Electroceram., 21, 349-352(2008) .
    [27] Yang Bai, Ji Zhou, Zhilun Gui, Longtu Li, Lijie Qiao, “The physic properties of Bi-Zn codoped Y-type hexagonal ferrite,” J. Alloys. Comp., 450, 412-416 (2008).
    [28] G. H . Hwang, W. Y. Kim, H. J. Jeon, and Y. S. Kim, “Physical properties of barrier ribs of plasma display panels. Part 2. Effects of fillers,” J. Am. Ceram. Soc., 85, 2961-2964 (2002).
    [29] G. H . Hwang, W. Y. Kim, H. J. Jeon, and Y. S. Kim , “Physical properties of barrier ribs of plasma display panels. Part I. Formation of pores during sintering of lead borosilicate glass frits,” J. Am. Ceram. Soc., 85, 2956-2960 (2002) .
    [30] E. S. Lim, B. S. Kim, and J. H. Lee, “Dielectric , thermal and sintering behavior of BaO-B2O3-SiO2 glasses with the addition of Al2O3,” J. Electroceram., 17,359-363 (2006).
    [31] C. S. Lee, J. R. Yoo, K. W. Jung, and S. C. Choi, “Fabrication of Pb free
    solder glass for electronic packaging application,” J. Korean. Ceram. Soc., 38,
    628-633 (2001).
    [32] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and electrical
    properties of BaO–B2O3–ZnO glasses,” J. Non-Cryst. Solids., 306, 70-75 (2002) .
    [33] R. Clasen, “Preparation of high-purity silica glass by sintering of colloidal
    Particles,” Glastech. Ber., 60, 125-132 (1987) .
    [34] J. S. Kim and C. I., Cheon, “Crystallization and void formation inZnO–B2O3–SiO2–MgO sintered solder glasses,” J. Mater. Sci., 32,1575-1579 (1997) .
    [35] M. O. Pardo and E. D. Zanotto,“Glass sintering with concurrent crystallization,”C. R. Chim., 5, 773-786 (2002) .
    [36] L. Zhien, S. Yihui, D. Xijiang, and C. Jijian, “Preparation and crystallization of Ultrafine Li2O-Al2O3-SiO2 powders,” J. Mater. Sci., 30, 390-394 (1995) .
    [37] Y. W. Park and B. S. Hyun, “Studies on the sintering of the cordierite
    glass–ceramics,” J. Korean. Ceram. Soc., 29, 779-784 (1992) .
    [38] 陳泰豪,「低溫共燒型介電-磁性陶瓷複合材料」,國立成功大學資源工程所碩士論文(2007) .
    [39] M. Randall, “Liquid phase sintering,”New York (1985) .
    [40] M. M. Costa, G. F. M. Pires Junior, A. S. B. Sombra., “Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite Ba2Co2Fe12O22 (Co2Y),” Mater. Chem. Phys., 123, 35-39 (2010) .
    [41] R. M. German, “Liquid phase sintering, ”Plenum Press, New York(1985).
    [42] 呂秉軍,「離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響」,國立成功大學資源工程所碩士論文(2012).

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE