簡易檢索 / 詳目顯示

研究生: 蕭銘殷
Hsiao, Ming-Ying
論文名稱: 區間式第二型模糊滑動模式控制之研究與應用
Study on Interval Type-2 Fuzzy Sliding-Mode Control and Its Applications
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 90
中文關鍵詞: 第二型模糊集合區間式第二型模糊邏輯控制輪形機器人區間式第二型模糊滑動模式控制適應性控制
外文關鍵詞: Adaptive control, interval type-2 fuzzy sliding-mode control, type-2 fuzzy set, interval type-2 fuzzy logic control, wheeled mobile robot
相關次數: 點閱:143下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討區間式第二型模糊邏輯的設計與其應用。首先以第二型模糊邏輯為基礎,開發出新的區間式第二型模糊邏輯控制器。此第二型模糊邏輯控制器在設計過程中並不需要受控系統詳細準確的數學模式,文中詳述了設計步驟並以50%參數變化的區間式線性系統為例來說明該控制器的有效性。為了更了解該控制器的性能,我們測試了不同形狀的歸屬函數及各種不同數目的規則庫。由模擬結果得知,區間式第二型模糊邏輯控制器的表現比第一型的模糊邏輯控制器較優,而在規則庫的數目愈少時,則此特性更趨明顯。然後,滑動模式控制的概念加入先前設計的區間式第二型模糊邏輯控制器而建構出區間式第二型模糊滑動模式控制器,文中詳述了區間式第二型模糊滑動模式控制器的設計步驟。接著利用李亞普諾夫理論來驗證此模糊控制器的穩定性。為了說明控制器的有效性,將此控制器應用於倒單擺系統、度芬混沌系統、以及統一化混沌系統。模擬結果顯示出,當系統有不確定性及外在擾動存在時,區間式第二型模糊滑動模式控制器的表現優於第一型模糊滑動模式控制器,區間式第二型模糊邏輯控制器以及第一型的模糊邏輯控制器。
    最後,適應控制法則導入於先前的區間式第二型模糊滑動模式控制器上,針對輪型機器人建構出智慧型控制器,整合了運動控制及區間式第二型適應模糊滑動模式動力控制。在此採用了李亞普諾夫理論來證明此智慧型控制器的穩定性。模擬結果顯示出,在輪型機器人的循跡控制上,本智慧型控制器性能表現優於傳統的適應模糊滑動模式動力控制器,而對外加擾動存在時亦有較佳的表現。

    In this dissertation, we propose a novel interval type-2 fuzzy logic controller (IT2-FLC) for interval system first. The precise mathematical model of the controlled plant is not required to design this IT2-FLC. Design procedure of the IT2-FLC is explored in detail. A typical linear interval system with 50% parameter variations is adopted to demonstrate the effectiveness of the proposed IT2-FLC. For better understanding the performance of IT2-FLC, numerous shapes of membership functions and variation of rule numbers of rule table are evaluated for simulation thoroughly. The simulation results are compared with those from type-1 fuzzy logic controller (T1-FLC) under same conditions. It shows that the performance of IT2-FLC is much better than that of T1-FLC if the number of rule is reduced. Then, the proposed IT2-FLC is combined with sliding-mode control (SMC) scheme as the interval type-2 fuzzy sliding-mode control (IT2-FSMC) for linear and nonlinear systems which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the proposed controlled system. A typical second order linear interval system with 50% parameter variations and disturbances, such as an inverted pendulum with variation of pole characteristics, a Duffing forced oscillation with uncertainty and disturbance, and a unified chaotic system are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2-FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1-FLC), the IT2-FLC, and the type-1 fuzzy sliding-mode controller (T1-FSMC).
    Finally, a combined intelligent technique is proposed for controlling the trajectory-tracking of a nonholonomic wheeled mobile robot (WMR), which comprises kinematic control and an interval type-2 adaptive fuzzy sliding-mode dynamic control (IT2-AFSMDC). The kinematic model is introduced first, and then the control gains can be obtained from the back-stepping method as the input of the dynamic model. The IT2-AFSMDC is propounded for the dynamic part, a combination of the interval type-2 fuzzy logic control (IT2-FLC) and the type-1 adaptive fuzzy sliding-mode dynamic control (T1-AFSMDC), which inherits the benefits of these two methods, and adaptive law is introduced to cope with the uncertainties and disturbances of the system. The trajectory-tracking stability is proved by the Lyapunov stability analysis. Computer simulations demonstrate the validity of the proposed method. The simulation results show that the tracking performance of the IT2-AFSMDC is better than that of the T1-AFSMDC.

    Contents 中文摘要 I Abstract III Acknowledgement (Chinese) V Contents VI List of Acronyms VIII List of Figures X List of Tables XIII Chapter 1 Introduction 1 1.1 Preliminary 1 1.2 Dissertation Contributions 5 1.2 Dissertation Organization 5 Chapter 2 Type-1 and Type-2 Fuzzy Logic System 7 2.1 Type-1 Fuzzy Logic System 7 2.2 Type-2 Fuzzy Logic System 10 2.2.1 Terminology of Type-2 Fuzzy Sets 10 2.2.2 Interval Type-2 Fuzzy Sets 13 2.2.3 Interval Fuzzy Logic System 14 2.3 Summary 17 Chapter 3 Interval Type-2 Fuzzy Logic Control 18 3.1 Introduction 18 3.2 Interval Type 2 Fuzzy Logic Controller Design 18 3.3 Application to Interval Linear System 25 3.4 Summary 32 Chapter 4 Interval Type-2 Fuzzy Sliding-Mode Control 33 4.1 Introduction 33 4.2 The Sliding-Mode Control 34 4.3 Design of Interval Type-2 Fuzzy Sliding-Mode Controller 37 4.3.1 Interval Type-2 Fuzzy Sliding-Mode Controller Design 38 4.3.2 Stability Verification of the Interval Type-2 Fuzzy Sliding-Mode Controller 39 4.4 Applications 41 4.4.1 Application to Inverted Pendulum 43 4.4.2 Application to Duffing System 51 4.4.3 Application to Unified Chaotic System 56 4.5 Summary 61 Chapter 5 Interval Type-2 Adaptive Fuzzy Sliding-Mode Control for the Wheeled Mobile Robot 62 5.1 Introduction 62 5.2 The Kinematic and Dynamic Controls of the Wheeled Mobile Robot 63 5.2.1 Kinematic Control of the Wheeled Mobile Robot 63 5.2.2 Dynamic Control of the Wheeled Mobile Robot 66 5.3 Designing the Interval Type-2 Adaptive Fuzzy Sliding-Mode Control 68 5.3.1 Sliding-Mode Dynamic Control Design of the Wheeled Mobile Robot 68 5.3.2 Interval Type-2 Adaptive Fuzzy Sliding-Mode Control Design 69 5.3.3 Stability analysis of the Interval Type-2 Adaptive Fuzzy Sliding-Mode Control 71 5.4 Simulation Results 73 5.5 Summary 77 Chapter 6 Conclusions 78 6.1 Conclusions 78 6.2 Recommendations for Further Work 79 Bibliography 80

    [1] L. Astudillo, O. Castillo, and L. T. Aguilar, “Intelligent control for a perturbed autonomous wheeled mobile robot: A type-2 fuzzy logic approach,” Journal of Nonlinear Studies, vol. 14, no. 3, pp. 37-48, 2007.
    [2] G. Bartolini and A. Ferrara, “Multi-input sliding mode control of a class of uncertain nonlinear system,” IEEE Transactions on Automatic Control, vol. 41, no. 11, pp. 1662-1667, 1996.
    [3] O. Castillo, N. Cazarez, and P. Melin, “Design of stable type-2 fuzzy logic controllers based on a fuzzy Lyapunov approach,” in Proceeding of FUZZ-IEEE, Vancouver, Canada, July 2006, pp. 2331-2336.
    [4] O. Castillo and P. Melin, “A New approach for plant monitoring using type-2 fuzzy logic and fractal theory,” International Journal of General Systems, vol. 33, pp. 305-319, 2004.
    [5] C. L. Chen, “Optimal design of fuzzy sliding-mode control: A comparative study,” Fuzzy Sets and System, vol. 93, pp. 37-48, 1998.
    [6] G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, pp. 1465-1466, 1999.
    [7] Z. Chen, C. Shan, and H. Zhu, “Adaptive Fuzzy Sliding Mode Control Algorithm for a Non-Affine Nonlinear System,” IEEE Transactions on Industrial Informatics, vol. 3, no. 4, pp. 302-311, 2007.
    [8] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 637–644, 2004.
    [9] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic based controller for wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 501-510, 2006.
    [10] R. A. Decarlo, S. H. Zak, and G .P. Matthews, “Variable structure control of nonlinear multivariable system: A tutorial,” Proceedings of IEEE, pp. 212-232, 1988.
    [11] G. Deschrijver and E. E. Kerre, “On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision,” Information Sciences, vol. 177, pp. 1860-1866, 2007.
    [12] F. Doctor, H. Hagras, and V. Callaghan, “A type-2 fuzzy embedded agent to realise ambient intelligence in ubiquitous computing environments,” Information Sciences, vol. 171, pp. 309-334, 2005.
    [13] W. Dong, W. Huo, S. K. Tso, and W. L. Xu, “Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 16, pp. 870-874, 2000.
    [14] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas, “A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games,” in Proceedings of FUZZ-IEEE, Reno, NV, 2005, pp. 359-364.
    [15] S. J. Fujikawa, H. Kobayashi, and Y. Dote, “Variable-structured robust controller by fuzzy logic for Servomotors,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 80-88, 1993.
    [16] R. F. Fung, K.W. Chen, and J. Y. Yen, “Fuzzy sliding mode controlled slide-crank mechanism using a PM synchronous servo motor drive,” International Journal of Mechanical Science, vol. 41, pp. 337-355, 1999.
    [17] S. M. Guo, L.S. Shieh, G. Chen, and C. F. Lin “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems - I. Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
    [18] Y. Guo and P. Y. Woo, “An adaptive fuzzy sliding mode controller for robotic manipulators” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 33, no. 2, pp. 149-159, 2003.
    [19] S. R. Habibi and R. J. Richards, “Sliding mode control of an electrically po red industrial robot,” IEE Proc.-D, vol. 139, no. 2, pp. 207-225, 1992.
    [20] H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 524-539, 2004.
    [21] H. A. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 30-43, 2007.
    [22] S. J. Huang and K. S. Huang, “An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection,” IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 845-852, 2001.
    [23] S. H. Huang and Y. R. Chen, “VLSI implementation of type-2 fuzzy inference processor,” in: Proc. IEEE ISCAS 2005, May 2005, pp. 3307-3310.
    [24] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
    [25] J. Y. Hung and P. B. Stevenson, “An output feedback sliding mode speed regulator for DC drives,” IEEE Transactions on Industrial Applications, vol. 3, no. 3, pp. 691-698, 1994.
    [26] C. L. Hwang, “A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-mode controller,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 5, pp. 676-687, 2004.
    [27] G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets and Systems, vol. 48, pp.79-287, 1992.
    [28] A. Ishingame, T. Furukawa, S. Kawamoto, and T. Taniguchi, “Sliding mode controller design based on fuzzy inference for nonlinear systems,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 64-70, 1993.
    [29] E. M. Jafarov and R. Tasaltin, “Robust sliding-mode control for uncertain MIMO aircraft Model F-18,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1127-1142, 2000.
    [30] R. I. John, P. R. Innocent, and M. R. Barnes, “Neuro-fuzzy clustering of radiographic tibia images using type 2 fuzzy sets,” Information Sciences, vol. 125 pp. 65-82, 2000.
    [31] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” Proc. IEEE Conf. Robotics and Automation, Cincinnati, OH, 1990, pp. 384-389.
    [32] N. N. Karnik and J. M. Mendel, “Introduction to Type-2 Fuzzy Logic Systems,” Proc.1998 IEEE FUZZ Conf., Anchorage, AK, May 1998, pp. 915-920.
    [33] N. N. Karnik and J. M. Mendel, “An introduction to type-2 fuzzy logic systems,” USC Report, http://sipi.usc.edu/~mendel/report, Oct. 1998.
    [34] N. N. Karnik and J. M. Mendel, “Applications of type-2 fuzzy logic systems to forecasting of time-series,” Information Sciences, vol. 120, pp. 89-111, 1999.
    [35] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 643-658, 1999.
    [36] K. Kiguchi, H. He, and K. Teramoto, “A study on multi-dimensional fuzzy q-learning for intelligent robots,” International Journal of Fuzzy Systems, vol. 9, no. 2, pp. 95-104, 2007.
    [37] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding surface,” Fuzzy Sets and Systems, vol. 71, pp. 359-367, 1995.
    [38] C. C. Kung and T. H. Chen, “Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems,” Fuzzy Sets and Systems, vol. 155, no. 2, pp. 292-308, 2005.
    [39] C. C. Lee, “Fuzzy logic in control system: fuzzy logic controller part I & II,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, pp. 404-435, 1990.
    [40] C. H. Lee, H. H. Chang, and B. H. Wang, “Decoupled adaptive type-2 fuzzy controller (DAT2FC) design for nonlinear TORA systems,” in Proceedings of IEEE-FUZZ Conference, July 16-21, 2006, pp. 506-512.
    [41] J. Lee, “On methods for improving performance of PI-type fuzzy logic controllers,” IEEE Transactions on Fuzzy System, vol. 1, pp.298-301, 1993.
    [42] L. Li, W. H. Lin, and H. Liu, “Type-2 fuzzy logic approach for short-term traffic forecasting,” IEE Proceedings of Intelligent Transportation Systems, vol. 153, no. 1, pp. 33-40, 2006.
    [43] T. H. S. Li and M. Y. Shieh, “Switching-type fuzzy sliding-mode control of a cart-pole system,” Mechatronics, vol. 10, pp. 91-101, 2000.
    [44] C. Y. Liang and J. P. Su, “A new approach to the design of a fuzzy sliding mode controller,” Fuzzy Sets and Systems, vol. 139, no. 1, pp. 111-124, 2003.
    [45] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8, pp. 535-550, 2000.
    [46] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters, IEEE Transactions on Fuzzy Systems, vol. 8, pp. 551-563, 2000.
    [47] P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters,” IEE Proceedings Electric Ppower Applications, vol. 152, no. 6, pp. 1482-1488, 2005.
    [48] Y. J. Liu and W. Wang, “Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems,” Information Sciences, vol. 177, pp. 3901-3917, 2007.
    [49] J. C. Lo and Y. H. Kuo, “A sliding-mode approach to fuzzy control design,” IEEE Transactions on Control Systems Technology, vo.4, no. 2, pp. 141-151, 1996.
    [50] J. Lü and G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and Chaos, vol. 12, no. 3, pp. 659-661, 2002.
    [51] J. Lü, G. Chen, D. Cheng, and S. Čelikovskў, “Bridge the gap between the Lorenz system and the Chen system,” International Journal of Bifurcation and Chaos, vol. 12, pp. 2917-2926, 2002.
    [52] M. S. Mahmoud, Y. Chen, and M. G. Singh, “Discrete two-time-scale systems,” International Journal of Systems Science, vol.17, no. 8, pp. 1187-1207, 1986.
    [53] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proceedings of IEE, 1974, pp. 1585-1588.
    [54] P. Melin and O. Castillo, “A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks,” International Journal of General Systems, vol. 33, pp. 289-304, 2004.
    [55] P. Melin and O. Castillo, “An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory,” Information Sciences, vol. 177, no. 7, pp. 1543-1557, 2007.
    [56] P. Melin, J. Urias, D. Solano, M. Soto, M. Lopez, and O. Castillo, “Voice recognition with neural networks, type-2 fuzzy logic and genetic algorithms,” Journal of Engineering Letters, vol. 13, no. 2, pp. 108-116, 2006.
    [57] J. M. Mendel, Uncertain rule-based fuzzy logic systems: introduction and new directions Prentice-Hall, Upper-Saddle River, NJ, 2001.
    [58] J. M. Mendel, “Computing with words and its relationships with fuzzistics,” Information Sciences, vol. 177, pp. 988-1006, 2007.
    [59] J. M. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10, pp. 117-127, 2002.
    [60] J. M. Mendel and H. Wu, “New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule,” Information Sciences, vol. 177, pp. 360-377, 2007.
    [61] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Information Sciences, vol. 170, pp. 409-418, 2005.
    [62] T. Orlowska-Kowalska and K. Szabat, “Damping of torsional vibrations in two-mass system using adaptive sliding neuro-fuzzy approach,” IEEE Transactions on Industrial Informatics, vol. 4, no. 1, pp. 47-57, 2008.
    [63] R. Palm, “Robust control by fuzzy sliding mode,” Automatica, vol. 30, pp. 1429-1437, 1994.
    [64] F. Pourboghrat and M. P. Karlsson, “Adaptive control of dynamic mobile robots with nonholonomic constraints,” Computers and Electrical Engineering, vol. 28, pp. 241-253, 2002.
    [65] R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz, and O. Montiel, “Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic,” Information Sciences, vol. 177, pp. 2023-2048, 2007.
    [66] R. Shahnazi, H. M. Shanechi, and N. Pariz, “Position control of induction and dc servomotors: a novel adaptive fuzzy pi sliding mode control,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp.138-147, 2008.
    [67] K. K. Shyu, F. J. Lin, H. J. Shieh, and H. S.Juang, “Robust variable structure speed control for induction motor drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 1, pp. 215-224, 1999.
    [68] J. F. Silva, “Sliding-mode control of boost-type unity-power-factor PWM rectifiers,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 3, pp. 594-603, 1999.
    [69] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, New York: Springer-Verlag, 1982.
    [70] J. J. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.
    [71] J. Suyitno, F. H. Kobayashi, and Y. Dote, “Variable-structured robust controller by fuzzy logic for servomotors,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 80-88, 1993.
    [72] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 33, no. 2, pp. 283-294, 2003.
    [73] H. Temeltas, “A fuzzy sliding mode controller for induction motor position control,” in Proceedings of IEEE ISIE '98, vol.1 ,pp.110 -115, 1998.
    [74] C. S. Ting, T. H. S. Li, and F. C. Kung, “An approach to systematic design of the fuzzy control system,” Fuzzy Sets and System, vol. 77, pp. 151-166, 1996.
    [75] S. Tong and H. X. Li, “Fuzzy adaptive sliding-mode control for MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11 pp. 354-360, 2003.
    [76] A. V. Topalov, J. H. Kim, and T. P. Proychev, “Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning,” Robotics and Autonomous Systems, vol. 23, pp. 187-200, 1998.
    [77] S. G. Tzafestas and G. G. Rigatos, “A simple robust sliding-mode fuzzy-logic controller of the diagonal type,” Journal of Intelligent and Robotic Systems, vol. 26, pp. 353-388, 1999.
    [78] V. I. Utkin, “Variable structure systems with sliding-modes,” IEEE Transactions on Automatic Control, vol. 22, pp. 212-222, 1979.
    [79] R. J. Wai, C. M. Lin, and C. F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets and Systems, vol. 143, no. 2, pp. 295-310, 2004
    [80] T. W. Wan and D. H. Kamal, “On-line learning rules for type-2 fuzzy controller,” in Proceedings of IEEE FUZZ Conference, July 16-21, 2006, pp. 513-520.
    [81] C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN),” IEEE Transactions on System, Man, and Cybernetics—Part B: Cybernetics, vol. 34, no. 3, pp. 1462-1477, 2004.
    [82] J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding-mode control: Part I: Fuzzy switching,” Fuzzy Sets and System, vol. 122, pp. 21-30, 2001.
    [83] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 1, pp. 146-155, 1993.
    [84] C. C. Wong and S. M. Feng, “Switching-type fuzzy controller design by genetic algorithms,” Fuzzy Sets and Systems, vol. 74, pp. 174-185, 1995.
    [85] C. C. Wong, H. Y. Wang, and S. A. Li, “PSO-based motion fuzzy controller design for mobile robots,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 284-292, 2008
    [86] C. C. Wong, H. Y. Wang, S. A. Li, and C. T. Cheng, “Fuzzy controller designed by GA for two-wheeled mobile robots,” International Journal of Fuzzy Systems, vol. 9, no. 1, pp. 22-30, 2007.
    [87] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “A fuzzy sliding controller for nonlinear systems,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 32-37, 2001.
    [88] C. A. Woodham and A. S. Zinober, “Eigenvalue placement in a specified sector for variable structure control systems,” International Journal of Control, vol. 57, pp. 1021-1037, 1993.
    [89] D. Wu and J. M. Mendel, “Uncertainty measures for interval type-2 fuzzy sets, Information Sciences, doi:10.1016/j.ins.2007.07.012, 2007.
    [90] D. Wu and J. M. Mendel, “A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets,” Information Sciences, doi:10.1016/j.ins.2007.04.014, 2007.
    [91] D. Wu and W. W. Tan, “Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller,” in Proceedings of IEEE-FUZZ Conference, May 2005, pp. 353-358.
    [92] D. Wu and W. W. Tan, “A simplified type-2 fuzzy controller for real-time control,” ISA Transactions, vol. 15, no. 4, pp. 503-516, 2006.
    [93] D. Wu and W.W. Tan, “Genetic learning and performance evaluation of type-2 fuzzy logic controllers,” International Journal of Engineering Applications of Artificial Intelligence, vol. 19, no. 8, pp. 829-841, 2006.
    [94] K. C. Wu, “Fuzzy interval control of mobile robots,” Computational Electronic Engineering, vol. 22, no. 3, pp. 211-229, 1996.
    [95] R. R. Yager, “Fuzzy subsets of type II in decisions,” Journal of Cybernetics, vol. 10, pp. 137-159, 1980.
    [96] Y. Yang and C. Zhou, “Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach,” Information Sciences, vol. 170, pp. 211-234, 2005.
    [97] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
    [98] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning - I,” Information Sciences, vol. 8, pp. 199-249, 1975.
    [99] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU) - an outline,” Information Sciences, vol. 172, pp. 1-40, 2005.
    [100] J. Zeng and Z.Q. Liu, “Type-2 fuzzy hidden Markov models and their application to speech recognition,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 3, pp. 454-467, 2006.
    [101] D. Q. Zhang and S. K. Panda, “Chattering-free and fast-response sliding mode controller,” IEE Proceedings of Control Theory and Applications, vol. 146, no. 2, pp. 171-177, 1999.

    下載圖示 校內:2011-07-23公開
    校外:2016-07-23公開
    QR CODE