簡易檢索 / 詳目顯示

研究生: 李怡婷
Lee, Yi-Ting
論文名稱: 風浪模式計算最佳化之研究
A study on the optimization of the Wind Wave models
指導教授: 歐善惠
OU, SHAN-HWEI
許泰文
Tai-Wen,Hsu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 51
中文關鍵詞: 能量密度波譜
外文關鍵詞: energy density spectrum
相關次數: 點閱:68下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風浪數值模式已被廣泛應用於波浪預報,本文針對單一 SWAN模式、 WAM模式、 NWWⅢ模式與 WAM/SWAN巢狀 模式探討各模式推算能力。由於各模式具有不同的數值方法、參數值及經驗式,所以計算結果亦會有所不同,透過模擬計算花耗時間、格網解析度不同、計算時距不同下,討論模擬結果與實測值的相關係數與絕對誤差之關係。由結果顯示出, WAM/SWAN巢狀 模式在波高模擬的準確度較其它模式來得好,而 WAM模式在週期模擬較其它三個模式有較好的模擬結果; NWW Ⅲ模式在模擬時所花耗的時間為最短。在研究中發現當颱風來襲時,由於 WAM/SWAN巢狀 模式的格網較能描述近岸水深變化,故較能模擬出較準確波高的尖峰值。本文並討論 SWAN模式不同參數的消散係數( ),由計算結果與實測資料的比較可發現當 接近 時,其模擬結果會越接近實測值。

    The wind wave models have been widely applied to the wave forecast. This paper, in view of the single SWAN model, the WAM model, the NWW III model and the WAM/SWAN nest model, discusses these models’ calculation ability. Because each model has different value methods, parameter values and empirical equation, the computed results also can be various. Through simulate calculation in spent time, different mesh analysis, and time ranges, the relation between correlation coefficient and absolute error in simulate results and actual values is discussed. The result shows that the WAM/SWAN nest model has higher accuracy than the other models in the wave height simulation. The WAM model compared with the other three models in the cyclical simulation has the best simulate result. NWW III model takes the shortest time in simulation. In the research, when typhoons coming, the mesh of WAM/SWAN nest-shaped pattern can describe the water depth change in nearshore better, so it can simulate a more accurate wave height peak value This paper also discusses the of different parameters in the SWAN pattern. Comparing the computed result with actual material, when is close to , its simulate result can be closer to the actual value.

    中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅸ 第一章 緒論 1 1-1 研究動機及目的 1 1-2 前人研究 2 1-3 本文組織 3 第二章 風浪模式理論 4 2-1 SWAN模式理論 4 2.1.1 基本理論 4 2.1.2 數值方法 5 2-2 WAM 模式理論 6 2.2.1 基本理論 6 2.2.2 數值方法 6 2-3 NWWⅢ 模式理論 8 2.3.1 基本理論 8 2.3.2 數值方法 9 2-4 風浪模式參數之比較 11 第三章 風浪模式驗証 13 3-1 有限風域 13 3-1 有限距離 15 第四章 實例計算 16 4.1 模式設定 16 4.1.1 颱風風場 16 4.1.2 格網設定 17 4-2 各模式比較 20 4-3 驗証參數 27 4-4 格網點大小 32 4-5 參數設定 36 4-6 計算時距調整 40 第五章 結論與建議 44 5.1 結論 44 5.2 建議 45 參考文獻 46

    1.Battjes, J. A. and J.F.M. Janssen, “Energy Loss and Set-up due to Breaking Random Waves”, Proceedings of 16th International Conference on Castal Engineering, ASCE, pp. 569-587 (1978).
    2.Battjes, J. A. and M. J. F. Stive, “Calibration and Verification of Dissipation model for random breaking waves, Journal of Geophysical Research, Vol. 90, No. C5, pp. 9159-9167 (1985).
    3.Bertotti, L. and L. Cavaleri, “Accuracy of Wind and Wave Evaluation in Coastal Regions,” Proc. 24th Int. Conf. Coastal Eng., pp. 57-67 (1994).
    4.Booij, N., L.H. Holthuijsen and R.C. Ris, “The SWAN Wave Model for Shallow Water,” Proc. 25th Int. Conf. Coastal Eng., pp. 668-676 (1996).
    5.Booij, N., L.H. Holthuijsen and IJ.G. Haagama,, “Comparison the Second- Generation HISWA Wave Model with the Third-Generation SWAN Wave Model ,” Proceedings of 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27-30, Melbourne, Florida, pp. 215-212(1998).
    6.Boris, J.P. and D.L. Book, “Flux Corrected Transport I, SHASTA, A Fluid Transport Algorithm that Works,” J. Comp. Physics, 11, pp. 38-69 (1973).
    7.Bouws, E. and G. J. Komen , “On the Balance between Growth and Dissipation in an Extreme, Depth-limited Wind-sea in the Southern North Sea,” Journal of Physical Oceanography, Vol. 13, pp. 1653-1658(1983).
    8.Bretherton, F.P. and C.J.R. Garrett, “Wave Trains in Inhomogeneous Moving Media,” Proc. Roy. Soc. Lon., A302, pp. 529-554 (1968).
    9.Bretschneider, C.L., “The Generation and Decay of Wind Waves in Deep Water,” Transaction American Geophysical Union, 33, No. 3, pp. 202-237 (1952).
    10.Cavaleri, L. and P. Malanotte-Rizzoli, “Wind Wave Prediction in Shallow Water Theory and Applications,” Journal of Geophysical Research, Vol. 86, No. C11, pp. 10961-10973(1981).
    11.Chalikov, D. V. and M. Y. Belevich, “One-dimensional theory of the wave boundary layer,” Bound. Layer Meteor., Vol. 63, pp. 65-96(1993).
    12.Chalikov, D. V., “The Parameterization of the Wave Boundary Layer,” Journal of Physical Oceanography, Vol. 25, pp. 1333-1349(1995).
    13.Collins, J. I., “Prediction of Shallow Water Spectra,” Journal of Geophysical Research, Vol. 77, No.15, pp. 2693-2707(1972).
    14.De Las Heras, M.M. and P.A.E.M. Janssen, “Data Assimilation with a Coupled Wind-Wave Model,” J. Geophys. Res., 97, pp. 20261-20270 (1992).
    15.De Valk, C.F. and C.J. Calkoen, “Wave Data Assimilation in a Third Generation Wave Prediction Model for the North Sea – An Optimal Control Approach,” Delft Hydraul. Lab., Delft, Netherlands, Rep. X38, pp. 123 (1989).
    16.Donea, J., “A Taylor-Galerkin Method for Convective Transport Problem,” Int. J. Num. Meth. Eng., 20, pp. 101-119 (1984). Eldeberky, Y., Nonlinear Transformation of Wave Spectra in the Nearshore Zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands (1996).
    17.Gandin, L.S., Objective Analysis of Meteorological Fields, Gidrometeoizdat, Leningrd, pp. 242 (1963).
    18.Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell and H. Walden, “Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z. Suppl. 12, A8 (1973).
    19.Hasselmann, K., “On the Spectral Dissipation of Ocean Waves due to Whitecapping,” Boundary-Layer Meteorology, 6, pp. 107-127 (1974).
    20.Hasselmann, K., D.B. Ross, P. Müller and W. Sell, “A Parametric Wave Prediction Model,” J. Phys. Oceanogr., 6, pp. 199-228 (1976).
    21.Hasselmann, S., K. Hasselmann, J.H. Allender and T.P. Barnett, “Computations and Parameterizations of the Linear Energy Transfer in a Gravity Wave Spectrum. Part II : Parameterizations of the Nonlinear Transfer for Application in Wave Models,” J. Phys. Oceanogr., 15, pp. 1378-1391 (1985).
    22.Hasselmann, K., S. Hasselmann, E. Bauer, C. Brüning, S. Lehner, H.C. Graber and P. Lionello, “Development of a Satellite SAR Image Spectra and Altimeter Wave Height Data Assimilation System for ERS-1,” Final Report ESA Study Contract No. 6875/87/HGE-I(SC), Max-Planck-Institut für Meteorologie, Report No. 19, pp. 155 (1988).
    23.Hasselmann, S., P. Lionello and K. Hasselmann, “An Optimal Interpolation Scheme for the Assimilation of Spectral Wave Data,” J. Geophys. Res., 102, pp. 15823-15836 (1997).
    24.Holthuijsen, L. H., N. Booij, R. C. Ris, J.H. Andorka Gal and J. C. M. de Jong, “An Verification of the Third-Generation Wave Model SWAN along the Southern North Sea Coast,” Proceedings 3rd International Symposium on Ocean Wave Measurement and Analysis, Waves’97, ASCE, pp. 49-63 (1997).
    25.Hsu, T.W., S.H. Ou and J.M. Liau, “Hindcasting Nearshore Wind Waves Using a FEM Code for SWAN,” Coastal Eng. (2004).
    26.Janssen, P.A.E.M., P. Lionello, M. Reistad and A. Hollingsworth, “Hindcasts and Data Assimilation Studies with the WAM Model During the SEASET Period,” J. Geophys. Res., 94, pp. 973-993 (1989).
    27.Janssen, P. A. E. M., “Quasi-linear Theory of Wind-wave Generation Applied to Wave Forecasting, “ Journal of Physical Oceanography, Vol. 21, pp. 1631- 1642(1991).
    28.Komen, G. J., S. Hasselmann, and K. Hasselmann, “On the Existence of a Fully Developed Wind-Sea Spectrum,” J. Phys. Oceanogr., 14, pp. 1271-1285 (1984).
    29.Komen, G.J., “Introduction to Wave Models and Assimilation of Satellite Data in Wave Models, In: The Use of Satellite Data in Climate Models,” Proc. Alpbach Conference, ESA Pub., ESA SP, 244, pp. 21-26 (1985).
    30.Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P.A.E.M. Janssen, Dynamics and Modeling of Ocean Waves, Cambridge University Press, pp. 532 (1994).
    31.Lionello, P., H. Günther and P.A.E.M. Janssen, “Assimilation of Altimeter Data in a Global Third Generation Wave Model,” J. Geophys. Res., 97, pp. 14253-14474 (1992).
    32.Lionello, P., H. Günther and B. Hansen, “A Sequential Assimilation Scheme Applied to Global Wave Analysis and Prediction,” J. Mar. Syst., 6, pp. 87- 107 (1995). Madsen, O. S., Y.-K. Poon and H. C. Graber, “Spectral Wave Attenuation by Bottom Friction Theory,” Proceedings of 21th International Conference on Coastal Engineering, ASCE, pp. 492-504(1988).
    33.Nelson, R. C., “Depth Limited Waves Heights in Very Flat regions,” Coastal Engineering, Vol. 23, pp. 43-59(1994).
    34.Ou., S.H., J.M. Liau, T.W. Hsu and S.Y. Tzang, “Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan,” Ocean Eng., 29, pp. 947-971 (2002).
    35.Pierson, W.J., G. Neumann and R.W. James, “Practical Method for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics,” US Navy Hydrographic Office, Pub. 603, pp. 284 (1955).
    36.Phillips, O.M., “Spectral and Statistical Properties of the Equilibrium Range in Wind-Generated Gravity Waves,” J. Fluid Mech., 156, pp. 505-531 (1985).
    37.Selmin, V., J. Donea and L. Quartapelle, “Finite Element Methods for Nonlinear Advection,” Comp. Meth. Appl. Mech. Eng., 52, pp. 817-845. (1985).
    38.Sverdrup, H.U. and W.H. Munk, “Wind, Sea and Swell, Theory of Relation for Forecasting,” US Navy Hydrographic Office, Pub. 601, pp. 44 (1947).
    39.SWAMP Group, Ocean Wave Modeling, Plenum Press, New York, pp. 255 (1985).
    40.Thomas, J.P., “Retrieval of Energy Spectra from Measured Data for Assimilation into a Wave Model,” Q. J. R. Meteorol. Soc., 114, pp. 781-800 (1988).
    41.Tolman, H. L., “The Numerical Model WAVEWATCH:A Third Generation Mode for the Hindcasting of Wind Waves on Tides in Shelf Seas”, Communication on Hydraulic and Geotechnical Engineering, Delft University of Technology, Report No. 89-2(1989).
    42.Tolman, H. L. and D. Chalikov, “Source Terms in a Third-Generation Wind Wave Model,” Journal of Physical Oceanography, Vol. 26, pp. 2497-2518(1996).
    43.Tolman, H. L., “Testing of WAVEWATCH Ⅲ version 2.22 IN NCEP’s NWW3 ocean wave model suite,” Technology Note 214, NOAA/NWS/NCEP/OMB, 99pp. (2002d).
    44.Tolman, H. L., “Validation of WAVEWATCH Ⅲ version 1.15 for a Global Domain,” Technology Note 213, NOAA/NWS/NCEP/OMB, 33pp.(2002f).
    45.Tolman, H. L., “User Manual and System Documentation of WAVEWATCH Ⅲ version 2.22,” Technology Note 213, NOAA/NWS/NCEP/OMB, 33pp.(2002f).
    46.Tolman, H. L., “A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady and Inhomogeneous depths and Currents,” Journal of Physical Oceanography, Vol. 21, pp. 782-797(1991).
    47.Tolman, H. L., “Effects of Numeric on the Physics in a Third-Generation Wind-wave Model,” Journal of Physical Oceanography, Vol. 22, pp. 1095-1111 (1992).
    48.WAMDI Group, “The WAM model-A Third Generation Ocean Wave Prediction Model”, Journal of Physical Oceanography, Vol. 18, pp. 1775-1810(1988).
    49.Wang, Y., and Z. Yu, “An Attempt to Improve SWAN Model,” Proc. 4th Workshop on Ocean Models for the APEC Region, Tainan, pp. 3-1 - 3-3. (2000).
    50.Willebrand, J., “Energy Transport in a Nonlinear and Inhomogeneous Random Gravity Wave Field,” J. Fluid Mech., 70, pp. 113-126 (1975).
    51.Wilson, B.W., “Graphical Approach to The Forecasting of Waves in Moving Fetches,” US Army Corps of Engineers, Beach Erosion Board Tech. Memo., 73. pp. 1-31 (1955).
    52.Wu, J., “Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane,” J. Geophys. Res., 87, pp. 9704-9706 (1982).
    53.Yanenko, N.N., The method of fractional steps, Springer-Verlag. (1971).
    54.錢樺,「最大熵法應用於推估方向波譜之研究」,國立成功大學水利及海洋工程研究所碩士論文(1996)。
    55.歐善惠、許泰文、臧效義、方介群、廖建明,「應用 SWAN 波浪模式推算台灣附近海域颱風波浪之研究」,第二十一屆海洋工程研討會論文集, 87頁 - 95頁 (1999)。
    56.方介群,「應用SWAN風浪模式推算台灣附近海域之颱風波浪」,國立成功大學水利及海洋工程研究所碩士論文 (2000)。
    57.廖建明,「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文(2001)。
    58.廖建明、許泰文、溫志中、鄧秋霞,「近岸風浪模擬之研究」,第十二屆水利工程研討會,I-52頁 – I-59頁 (2001)。
    59.林文欽,「WAVEWATCH Ⅲ 海洋波浪模式之參數敏感度分析」,國立成功大學水利及海洋工程研究所碩士論文(2004)。
    53.陳亞嵐,「近岸風浪推算資料同化之研究」,國立成功大學水利及海洋工程研究所碩士論文(2004)。

    下載圖示 校內:立即公開
    校外:2005-08-01公開
    QR CODE