簡易檢索 / 詳目顯示

研究生: 蔡永富
Tsai, Yung-Fu
論文名稱: DGPS量測系統於高動態載具軌跡重建之分析
Trajectory Reconstruction of a High Dynamic Vehicle by DGPS Correction
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 差分修正卡爾曼濾波器高動態探空火箭
外文關鍵詞: Sounding Rocket, high dynamic, Kalman filter, DGPS
相關次數: 點閱:143下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球衛星定位系統(Global Positioning System,GPS)目前已成為最重要的導航輔助系統,其應用不僅提供軍用或民用航具之導航,亦廣泛應用於測量、野外活動之定位、道路導引、緊急救援、保全…等。本論文主要為配合探空四號火箭之GPS酬載實驗,針對探空火箭高動態之特性,建立一DGPS量測系統,並利用後處理方式分析GPS接收訊號以提升探空火箭定位與軌跡重建精度。吾人先針對靜態接收GPS之觀測進行分析,對其接收訊號誤差來源進行探討,並根據探空火箭高動態之特性,採用擴展式卡爾曼濾波器,以提升探空火箭定位精度。

    The Global Positioning System(GPS)has already become one of the most important navigation systems today. The thesis establishes a differential GPS (DGPS) correction system so as to be used in a sounding rocket experiment. The DGPS system is composed of a reference receiver, a monitoring receiver, as well as a metrological data recorder. The reference receiver is used to provide differential correction data. The monitoring system, on the other hand, detects signal anomaly to improve the quality of measurement data. The metrological data are used for better modeling of GPS errors. Data processing capabilities are established to process the on-board GPS measurements and DGPS corrections. Data discrepancies in the telemetry GPS data are corrected and filtered. Through an extended Kalman filter formulation, it is shown that the resulting accuracy on the position and velocity of the sounding rocket is improved.

    摘 要.......................................I ABSTRACT....................................II 致謝.......................................III 目錄........................................IV 表目錄.......................................V 圖目錄......................................VI 第一章 序論.................................1 1.1 前言................................1  1.2 研究目的及方法......................2   1.3 論文架構............................5 第二章 GPS觀測分析..........................7   2.1 基站觀測分析........................7   2.2 載具觀測分析.......................12 第三章 GPS系統定位計算及誤差修正...........17   3.1 GPS系統定位計算....................17     3.1.1 GPS系統導航資料計算..........17     3.1.2 GPS系統定位計算..............22   3.2 GPS系統誤差........................28     3.2.1 衛星本身誤差.................29     3.2.2 訊號傳播誤差.................30     3.2.3 接收器誤差...................32   3.3 GPS系統之誤差模式修正..............32     3.3.1 電離層誤差模式修正...........34     3.3.2 對流層誤差模式修正...........40 第四章 DGPS量測分析........................43   4.1 DGSP基站量測分析...................43   4.2 DGPS靜態量測分析...................47   4.3 DGPS動態量測分析...................51     4.3.1 載具動態與定位...............51     4.3.2 飛測實驗結果與分析...........55 第五章 結論................................62   5.1 結論...............................62   5.2 未來工作...........................62 參考文獻....................................63

    1. P. Axelrad and C. P. Behre, “Satellite Attitude Determination Based on
    GPS Signal-to-Noise Ratio,” Proceedings of the IEEE, Vol. 87, No. 1,
    133-144, 1999.
    2. S. Bisnath and R.B. Langley, Assessment of the GPS/MET TurboStar GPS
    Receiver for Orbit Determination of a Future CSA Micro/Small-satellite
    Mission, University of New Brunswick, 1996.
    3. D. Burrows and J. Nousek, Astrophysics Sounding Rockets at Penn State,
    burrows@astro.psu.edu
    4. C. E. Cohen, “Attitude Determination,” In Global Positioning System:
    Theory and Applications, Volume 2, 1996.
    5. Cornell Space Plasma Physics Group, sppguest@ee.cornell.edu
    6. B. Dunbar and M. Hardin, Mission to Planet Earth TOPEX/POSEIDON,
    NASA/CNES Press Kit, Aug. 1992.
    7. J. Farrell and T. Givargis, “Differential GPS Reference Station Algorithm
    - Design and Analysis,” IEEE Transactions on Control Systems Technology,
    Vol. 8, No. 3, May 2000.
    8. J.L. Gerner, J.L. Issler, D. Laurichesse, C. Mehlen, and N. Wilhelm,
    TOPSTAR 3000 – An Enhanced GPS Receiver for Space Applications, eesa
    bulletin 104, Nov 2000.
    9. M. S. Grewal and A. P. Andrews, Kalman Filtering Theory and Practice,
    John-Wiley & Sons, 2001.
    10. M. S. Grewal, L.R. Weill, and A. P. Andrews, Global Positioning Systems,
    Inertial Navigation, and Integration, John-Wiley & Sons, 2001.
    11. GPS Joint Program Office, ICD-GPS-200 GPS Interface Control Document,
    ARINC Research Corporation, 1997.
    12. J. Hegg, “Enhanced Space Integrated GPS/INS (SIGI),” IEEE Aerospace and
    Electronic Systems Magazine, Vol. 17, Issue 4, pp. 26 - 33, Apr. 2002.
    13. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning
    System: Theory and Practice, 4ndEd., Springer-Verlag, 1997.
    14. J. C. Juang and G. S. Huang, “Development of GPS-Based Attitude
    Determination Algorithms,” IEEE Transactions on Aerospace and Electronic
    System, Vol. 33, No. 3, 968-976, 1997.
    15. M. Kayton and W. R. Fried, Avionics Navigation Systems, Wiley
    Interscience, 1997.
    16. W. J. Klepczynski, “GPS for Precise Time and Time Interval Measurement,”
    In Global Positioning System: Theory and Applications, Volume 2, 1996.
    17. J. A. Klobuchar, “Ionospheric Effects on GPS,” In Global Positioning
    System: Theory and Applications, Volume 1, 1996.
    18. E. G. Lightsey, “Spacecraft Attitude Control Using GPS Carrier Phase,”
    In Global Positioning System: Theory and Applications, Volume 2, 1996.
    19. M. Markgraf, O. Montenbruck, F. Hassenpflug, B. Bull, and P. Turner,
    “A Low Cost GPS System for Real-Time Tracking of Sounding Rockets,”
    15th European Sym. on European Rocket and Balloon Prohrammes and Related
    Research, 2001.
    20. O. Montenbruck, W. Enderle, M. Schesny, V. Gabosch, S. Ricken, and
    P. Turner, “Position-Velocity Aiding of a Mitel ORION Receiver for
    Sounding-Rocket Tracking,” ION GPS 2000, 19-22, 2000.
    21. O. Montenbruck and M. Markgraf, “Maxus-4 Orion GPS Tracking System,”
    Space Flight Technology Flight Report, German Space Operations Center
    (GSOC), July 52001.
    22. O. Montenbruck, M. Markgraf, and F. Hassenpflug, “Pre-Flight Assessment
    of a Dual-Blade Antenna System for GPS Tracking of Sounding Rockets,”
    DLR-GSOC TN 01-03, 2001.
    23. M. Murata, M. Harigae, and T. Tsujii, “Orbit Determination of the Orbit
    Re-Entry Experiment (OREX) Spacecraft by GPS,” AAS 96-179.
    24. Navigation Center, http://www.navcen.uscg.gov/ftp/GPS/almanacs/yuma/
    25. NordNav Technologies, http://www.nordnav.com/index.php
    26. Y. Park, J. Brazzel, R. Carpenter, H. Hinkel, and J. Newman, “Flight
    Test Results from Realtime Relative GPS Flight Experiment on STS-69,”
    AAS 96-182.
    27. B. W. Parkinson and S. W. Gilbert, “NAVSTAR: Global Positioning System
    – Ten Years Later,” Proceedings of the IEEE, Vol. 71, No. 10, 1177-1186,
    1983.
    28. B. W. Parkinson, J. J. Spilker, P. Axelrad, and P. Enge (eds.), Global
    Positioning System: Theory and Applications Volume 1 and 2, American
    Institute of Aeronautics and Astronautics, 1996.
    29. B. W. Parkinson, T. Stansell, R. Beard, and K. Gromov, “A History of
    Satellite Navigation,” Navigation: Journal of the Institute of Navigation,
    Vol.42, No. 1, pp.109-164, 1995.
    30. G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS,
    Wellesley-Cambridge Press, 1997.
    31. B. Y. Tsui, Fundamentals of Global Positioning System Receivers,
    John-Wiley & Sons, 2000.
    32. U. S. Department of Transportation, FAA-E-2892B, Change 1:Wide Area
    Augmentation System Specification (WAAS), DTFA01-96-C-00025
    Modification No. 0051, 1999.
    33. P. Ward, “Satellite Signal Acquisition and Tracking,” in Understanding
    GPS: Principles and Applications, Artech House, 1996.
    34. T. P. Yunck, “Orbit Determination,” In Global Positioning System:
    Theory and Applications, Volume 2, 1996.
    35. 莊智清,黃國興,電子導航,全華科技圖書,民90年。
    36. 國家太空中心,http://www.nspo.gov.tw/projects/projectRocket/intro.htm

    下載圖示 校內:立即公開
    校外:2005-07-06公開
    QR CODE