| 研究生: |
陳政翰 Chen, Cheng-Han |
|---|---|
| 論文名稱: |
中西醫第二代雙感測脈診儀之研製 Implementation of Second Generation Bi-Sensing Pulse Diagnosis Instrument for Chinese and Western Medicine |
| 指導教授: |
羅錦興
Luo, Ching-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 中醫 、西醫 、雙感測脈診儀 、脈診 |
| 外文關鍵詞: | Traditional Chinese Medicine, Western Medicine, Bi-Sensing Pulse Diagnosis Instrument, Pulse Diagonosis |
| 相關次數: | 點閱:114 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討一個稱為第二代雙感測脈診儀(BSPDI-2)全新儀器之開發,其功能和能力比其前身更加強大。第一代雙感測脈診儀(BSPDI)的開發目的是利用中醫脈診方法獲取平面脈搏波數據。BSPDI與現有脈搏量測儀器最大的不同處在於BSPDI對於觸摸位置和壓入深度有著明確的定義。
第一代脈診儀BSPDI在過去貢獻了許多有價值的研究,諸如將把脈手法標準化、辨識了浮、中、沉的存在。它可以記錄於不同按壓深度的數據,也可記錄脈搏平面的跳動情形。BSPDI最有價值的地方就在於它能把脈搏平面的跳動情況視覺化,這也是它與其他脈搏偵測儀器最大的不同。而儘管如此,BSPDI仍有一些在設計與實作的缺點,例如按壓深度解析度不足、機械手指的移動範圍不足。因此,我們團隊研製了第二代雙感測脈診儀BSPDI-2。比較第一代與第二代,第二代在陣列感測器的偵測點數量是第一代的兩倍,第二代的按壓深度解析度為0.01mm,是比第一代的1mm還來的精細,且第二代的機械手指為三軸移動,比第一代的單軸移動還要強大。而在開發軟體面上,第二代除了可以產出2-D的脈搏波,也能顯示出名為3-D的脈搏影像稱為3DPM(3 Dimension Pulse Mapping)。
本論文包含此系統的設計概念和實現方法,並討論其在不久的將來的發展。該儀器將在未來心血管疾病的診斷領域上有著巨大的貢獻。
A whole new instrument called Bi-Sensing Pulse Diagnosis Instrument 2 (BSPDI-2) using in taking pulse is developed, and its function and ability is more powerful than its predecessor. The developing purpose of the first generation of BSPDI is to use the TCM pulse diagnosis method to get plane pulse wave data. The clear definitions of the touch positions and the pressing depth are the huge difference between BSPDI and the present pulse tonometry.
The first generation of BSPDI did many valuable studies such as standardizing the pulse taking method and identifying the existence of the Fu, Zhong and Chen. It can records the data of the different pressing depth and records the pumping state of the plane pulse wave. The most valuable contribution of the BSPDI is that it makes the plane pulse wave visible and this point is also the most difference between other pulse detection instruments. But still, there are some disadvantages in the design and implementation of the BSPDI, such as the insufficiency of the pressing depth resolution and the movement range of the robot fingers. Therefore, we developed the BSPDI-2 improving the disadvantages of the BSPDI. Comparing the BSPDI and BSPDI-2, the sensor element number of BSPDI-2 in the same area size is two times than BSPDI, and the pressing depth resolution of BSPDI-2 is 0.01 mm that is more accurate than BSPDI which is 1 mm. Also, the robot fingers in BSPDI-2 is 3-axis motion which is more powerful than the robot finger in BSPDI which is 1-axis. For the developed software, BSPDI-2 can produce 2-D pulse wave and 3-D pulse wave image called 3 dimension pulse mapping (3DPM).
This thesis contains the design concept and implementation method of this system, and discuss its development in the near future. This instrument will have a huge contribution to the diagnosis of cardiovascular disease in the future.
[1] SphygmoCor t Cardiovascular Management System (CvMS) - 510(k) Summary Web page. (2007). from http://www.accessdata.fda.gov/cdrh_docs/pdf7/K070795.pdf
[2] Chen, J. X., & Liu, F. (2008). Research on Characteristics of Pulse Delineation in TCM and Omnidirectional. IEEE International Symposium on IT in Medicine and Education, 536-538.
[3] Heck, A. F., Minter, R. E., & Caggiano, V. (1972). A system for continuous recording of cardiovascular time interval data and respiration Medical Research Engineering, 11(2), 21-25.
[4] Hua, S. (2002). Classic of Difficult Issues. Taipei: Publishing House of Wen Guang.
[5] Huang, X. P., & Li, B. X. (1999). The comparison of BYS-1 and MX-811. Journal of Huna College of Traditional Chinese Medicine, 1.
[6] Jin, G. C., & Yu, M. (1999). Research of Multi-point Pulse Wave Computer Measurement System Using PVDF. Journal of Tsinghua University Science and Technology, 33, 118-121.
[7] Kelly, R., Hayward, C., Avolio, A., & O'Rourke, M. (1989). Nonivasive determination of age-related changes in the human arterial pulse Circulation, 80(6), 1652-1659.
[8] Mahomed, F. A. (1872). The physiology and clinical use of the sphygmograph. Med Times Gazette, 1, 62.
[9] World Health Organization (2007). WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Regin. New York, U.S.: Renouf Pub Co Ltd.
[10] O'Rourke, M. F., Pauca, A., & Jiang, X.-J. (2001). Pulse wave analysis. British Journal of Clinical Pharmacology, 51(6), 507-522.
[11] Tang, W. C., & Sun, H. J. (2000). The Detected Method of Multipath of Pulse Conditions and Research of Transducer. Chinese Journal of Traditional Chinese Medicine and Technology, 5, 319-320.
[12] Unschuld, P. U. (1986). Medicine in China: Nan-Ching, Classic of Difficult Issues. New York, U.S.: University of California Press.
[13] Wu, J. H., Chang, R. S., & Jiang, J. A. (2007). A Novel Pulse Measurement System by Using Laser Triangulation and A CMOS Image Sensor. Sensors, 7, 3366-3385.
[14] Zhang, A. H., Li, Y. P., Yu, D., & Guo, W. G. (2008). Pulse Signals Detection by Digital Image Correlation. Paper presented at the 1st International Conference on Biomedical Engineering and Informatics.
[15] Zheng, H. X., & Li, J. L. (1999). Complete Collection of Zhou Xue Hai Medical Works. Beijingm China: China Press of Traditional Medicine.
[16] Zheng, Y.-Y., Lung, C.-W., Zhang, Y.-L., Li, X.-Q., Ma, Z.-C., & Sun, Y.-N. (2012). Radial diastolic augmentation index is a useful predictor of arterial stiffness. Journal of Mechanics in Medicine and Biology, 12(1).