簡易檢索 / 詳目顯示

研究生: 林世明
Lin, Shih-Min
論文名稱: 摻雜氮元素之二氧化鈦薄膜改善光觸媒性質研究
The study of TiO2 film doped nitrogen for photocatalytic performance
指導教授: 蘇演良
Su, Yan-liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 141
中文關鍵詞: 二氧化鈦可見光摻雜光觸媒
外文關鍵詞: photocatalytic effect, dope, nitrogen, titanium dioxide, visible light
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用非平衡磁控濺鍍系統(Unbalanced Magnetron Sputtering System,UBM)製備含氮二氧化鈦薄膜(TiOxNy )。二氧化鈦薄膜常見的製備方法有CVD、Sol-Gel、浸鍍法等方式,這類製出的薄膜不易附著於底材;故本實驗以UBM製造二氧化鈦薄膜。UBM製膜的優點:具平整性與均勻度、鍍層緻密且附著性佳,薄膜不脫落可持續進行光觸媒反應。實驗以氮元素摻雜(Doping)及後續熱處理方式改善光觸媒性質;探討氮含量與溫度對薄膜的影響,並利用刮痕試驗機與壓痕實驗觀察薄膜附著性。實驗結果顯示:以UV燈為光源,TiOxNy薄膜反應顯著;以藍色燈(可見光)為光源並無反應。氮元素的掺入與熱處理的確影響薄膜性質;氮流率越高,光吸收曲線之紅移現象越明顯、能隙越小、亞甲藍色劑分解速度越快且表面親水性越高,但薄膜附著能力下降;其中最高氮氣流率9sccm的4H0試片,出現最小能隙達2.87eV;氮流率6sccm且進行熱處理350℃有最快分解效率;薄膜附著性則以未摻雜之組別有較佳附著能力,臨界荷載(Lc)數值較高,其中3H0試片有大Lc=16.2N,且3H0薄膜有最大硬度達10GPa。而熱處理溫度越高,出現藍移現象、亞甲藍分解速度減慢、附著性不佳,對降低能隙則無影響。葡萄球菌抗菌實驗結果顯示,無明顯殺菌效果。

    The aim of this project is to investigate the doped nitrogen titanium dioxide which is fabricated by unbalanced pulse magnetron sputtering system. HSS substrates and quartzes are coated with film by PVD method. Using titanium metal target, nitrogen, argon and oxygen gas produced doped nitrogen titanium dioxide thin film. For combining different compound, we hold the argon and oxygen gas flow rate and design parameters to change the nitrogen gas flow rate. To observe different nitrogen content will influence the crystalline structure, film absorption reaction and photo catalytic effect. We divided this project into three stages to finish it:First of all, to set parameters of compound and analyze basic properties: We find the better sputtering current parameter by changing current of titanium target and control the suitable flow rate of argon and oxygen gas. Finally to pour different nitrogen flow rate into chamber combined four coating films, respectively. SKH51 substrates and quartzes are coated with doped
    nitrogen titanium dioxide. Since let these samples divide into four groups for heated treatment. We can know the nitrogen content and sintering will influence crystalline structure, micro scale structure and content ratio. Afterward we measure coating adhesion by scratching tester.Second of all, film absorption properties and establish mechanism:The different nitrogen content and heated treatment temperature have distinct photon absorption properties. Using spectrum knows transmittance and absorption of coatings. Afterward we can calculate the energy band gap by Tauc-plot and know the influence of nitrogen content.Final of all: Photocatalytic effect: The main application of titanium dioxide is oxidization. It can decompose dirt is due to oxidation. We can see decomposition and antiseptic effect by methylene blue discoloration and MRSA (methicillin resistant Staphy`lococcus aureus). To observe that nitrogen content and heated treatment temperatures affect photocatalytic effect.

    口試合格證明書 摘要 I Abstract II 誌謝 III 總目錄 IV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 第二章 理論探討與文獻回顧 3 2-1薄膜成形 3 2-1-1 薄膜成形技術 3 2-1-2 成形技術的用途 3 2-1-3 成形技術的種類 4 2-2 二氧化鈦製造 5 2-3 濺鍍理論 9 2-3-1 直流濺鍍原理 9 2-3-2 磁控濺鍍 10 2-4 鍍膜介紹 11 2-5 機制原理 12 2-6 研究方向 15 2-6-1 摻雜改善光觸媒效能 15 2-6-2 熱處理增加結晶性 16 2-6-3 薄膜附著性質 17 2-6-4 薄膜硬度 18 第三章 實驗方法 19 3-1 實驗目的 19 3-2 實驗流程 19 3-3 實驗方法及規劃 20 3-3-1 濺鍍參數與鍍膜安排 20 3-3-2 實驗材料 21 3-3-3 成份分析 22 3-3-4 結構分析 23 3-3-5 硬度實驗 24 3-3-6 附著性實驗 24 3-3-7 真空熱處理實驗 25 3-3-8 表面及斷面型態分析 25 3-3-9 光吸收-穿透分析 26 3-3-10 能隙量測 26 3-3-11 鍍層TiOxNy光觸媒性質實驗 27 第四章 結果與討論 31 4-1 鍍層基本性質 31 4-1-1 鍍層結晶結構 31 4-1-2 鍍層厚度與成份分析 33 4-1-3 鍍層奈米硬度 36 4-2 鍍層附著性 37 4-2-1 壓痕實驗 37 4-2-2 刮痕實驗 38 4-3 鍍層斷面觀察 40 4-4 薄膜感光性質 41 4-4-1 薄膜光吸收性質 41 4-4-2 薄膜光穿透性質 43 4-5 能隙量測 44 4-6 TiOxNy鍍層實驗實驗結果 47 4-6-1 亞甲藍分解實驗 47 4-6-2 表面親水性實驗 49 4-6-3 殺菌實驗 50 第五章 結論與未來展望 52 5-1 結論 52 5-2 未來展望 53 第六章 參考文獻 55 表目錄 Table 4-1 Specimen number and parameters of TiOxNy film 60 Table 4-2 Thickness(nm) of TiOxNy film (unheated samples, HT0) 60 Table 4-3 Thickness(nm) of film (heated 350℃ samples, HT3) 60 Table 4-4 Thickness(nm) of film (heated 550℃ samples, HT5) 61 Table 4-5 Thickness(nm) of film (heated 650℃ samples, HT6) 61 Table 4-6 Critical loading(N) of film (When maximum load=100 N) 61 Table 4-7 GDS content analysis of film 62 Table 4-8 EDS content analysis of film 62 Table 4-9 nanoindentation of film (unheated samples, HT0) 62 Table 4-10 the Eg of film by absorption spectrum 63 Table 4-11 the Eg(eV) of film by photoluminescence 63 Table 4-12 The surface hydrophilic effect 64 Table 4-13 Grain size(nm) of TiOxNy film 64 圖目錄 圖2-1. 薄膜形成技術種類 65 圖2-2. 典型直流鍍膜系統構造示意圖 66 圖2-3. 輝光放電示意圖 66 圖2-4. 傳統磁控與非平衡磁控濺鍍示意圖 67 圖2-5. TiO2結晶結構幾何圖形 68 圖2-6. 溫度與壓力關係圖 68 圖2-7. 光觸媒反應機制示意圖 69 圖2-8. 氮摻雜示意圖 69 圖3-1. 實驗流程 70 圖3-2. KD-550U封閉式非平衡磁控濺鍍系統(主腔體) 71 圖3-3. KD-550U封閉式非平衡磁控濺鍍系統(控制系統) 71 圖3-4. KD-550U封閉式非平衡磁控濺鍍系統(腔體內部構造示意圖) 72 圖3-5. MRSA (Multiple-resistant Staphylococcus aureus) 72 圖3-6. 壓痕破裂型態示意圖 73 圖3-7. 刮痕測試機台示意圖 73 圖3-8. 真空熱處理爐主槍體與幫浦 74 圖3-9. UV-Vis 光譜儀機台及內部構造示意圖 75 圖3-10. 可見光藍色燈源光譜 76 圖3-11. 亞甲藍降解實驗分析示意圖 76 圖3-12. Liquid drop showing the contact angle. 77 圖3-13. Picture of the contact angle test machine. 77 圖3-14. The software of the contact angle test machine. 77 圖3-15. The law of Photon luminescence 78 圖4-1. 未熱處理組(HT0)之XRD繞射圖 79 圖4-2. 熱處理組(HT3)之XRD繞射圖 79 圖4-3. 熱處理組(HT5)之XRD繞射圖 80 圖4-4. 熱處理組(HT6)之XRD繞射圖 80 圖4-5. HT0之奈米硬度值 81 圖4-6. HT0之楊氏模數值 81 圖4-7(a). 未熱處理TiOxNy鍍層之荷載與位置關係圖 81 圖4-7(b). 未熱處理TiOxNy鍍層性質與氮氣流率關係圖 81 圖4-8. TiOxNy鍍層之未熱處理組HT0壓痕實驗 82 圖4-9. TiOxNy鍍層之未熱處理組HT0壓痕邊緣破裂情形 83 圖4-10. 編號4H0不同壓痕破裂位置之鈦元素EDS之含量 84 圖4-11. TiOxNy鍍層之未熱處理組HT0刮痕實驗 85 圖4-12. TiOxNy鍍層之未熱處理組HT0刮痕邊緣破裂情形 86 圖4-13. 編號4H0不同刮痕破裂位置之鈦元素EDS之含量 87 圖4-14. TiOxNy鍍層之未熱處理組HT0之SEM斷面圖 88 圖4-15. TiOxNy鍍層之未熱處理組HT3壓痕實驗 89 圖4-16. TiOxNy鍍層之未熱處理組HT3壓痕邊緣破裂情形 90 圖4-17. 編號4H3不同壓痕破裂位置之鈦元素EDS之含量 91 圖4-18. TiOxNy鍍層之未熱處理組HT3刮痕實驗 92 圖4-19. TiOxNy鍍層之未熱處理組HT3刮痕邊緣破裂情形 93 圖4-20. 編號4H3不同刮痕破裂位置之鈦元素EDS之含量 94 圖4-21. TiOxNy鍍層之未熱處理組HT3之SEM斷面圖 95 圖4-22. TiOxNy鍍層之未熱處理組HT5壓痕實驗 96 圖4-23. TiOxNy鍍層之未熱處理組HT5壓痕邊緣破裂情形 97 圖4-24. 編號4H5不同壓痕破裂位置之鈦元素EDS之含量 98 圖4-25. TiOxNy鍍層之未熱處理組HT5刮痕實驗 99 圖4-26. TiOxNy鍍層之未熱處理組HT5刮痕邊緣破裂情形 100 圖4-27. 編號4H5不同刮痕破裂位置之鈦元素EDS之含量 101 圖4-28. TiOxNy鍍層之未熱處理組HT5之SEM斷面圖 102 圖4-29. TiOxNy鍍層之未熱處理組HT6壓痕實驗 103 圖4-30. TiOxNy鍍層之未熱處理組HT6壓痕邊緣破裂情形 104 圖4-31. 編號4H6不同壓痕破裂位置之鈦元素EDS之含量 105 圖4-32. TiOxNy鍍層之未熱處理組HT6刮痕實驗 106 圖4-33. TiOxNy鍍層之未熱處理組HT6刮痕邊緣破裂情形 107 圖4-34. 編號4H6不同刮痕破裂位置之鈦元素EDS之含量 108 圖4-35. TiOxNy鍍層之未熱處理組HT6之SEM斷面圖 109 圖4-36. TiOxNy薄膜之光吸收性質 110 圖4-37. TiOxNy薄膜之光穿透性質 111 圖4-38. TiOxNy薄膜之Tauc-plots 112 圖4-39. 薄膜之PL光譜 113 圖4-40. UV燈源之HT0組MB降解實驗 114 圖4-41. UV燈源之MB分解效能實驗 115 圖4-42. 可見光燈源之HT0組MB降解實驗 116 圖4-43. 組別HT0之可見光燈源-亞甲藍分解實驗 117 圖4-44. 編號4H0試片之表面親水性變化 117

    1.李邦哲, “薄膜成形技術的演進與未來-薄膜成形技術新紀元”, 台灣綜合展望, 2003.1.11, No.7.
    2.呂宗昕,”圖解奈米科技與光觸媒”,商周出版,P.179–179
    3.M. Maeda, Evaluation of photocatalytic properties of titanium oxide films prepared by plasma-enhanced chemical vapor deposition, Teruyoshi Watanabe, Thin Solid Films 489 (2005) 320 – 324
    4.Y. Guo, X. Zhang, W.H. Weng, G. Han, Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition, Thin Solid Films 515(2007) 7117–7121
    5.K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surface and Coatings Technology 191 (2005) 155– 160
    6.T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi,A. Fujishima, K. Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films 351 (1999) 260–263
    7.K.S. Yao, D.Y. Wang, W.Y. Ho, J.J. Yan, K.C. Tzeng, Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens, Surface & Coatings Technology (2006) 6886–6888
    8.P. Frach, D. Gloβ X, Chr. Metzner, T. Modes, B. Scheffel, O. Zywitzki, Deposition of photocatalytic TiO2 layers by pulse magnetron sputtering and by plasma-activated evaporation, Vacuum 80 (2006) 679–683
    9.D. Glfg, P. FrachT, O. Zywitzki, T. Modes, S. Klinkenberg, C. Gottfried, Photocatalytic titanium dioxide thin films prepared by reactive pulse magnetron sputtering at low temperature, Surface and Coatings Technology 200 (2005) 967– 971
    10.O. Treichel , V. Kirchhoff, The influence of pulsed magnetron sputtering on topography and crystallinity of TiO2 films on glass, Surface and Coatings Technology 123 (2000) 268–272
    11.O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Gloβ, Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering, Surface and Coatings Technology 180 –181 (2004) 538–543
    12.W.R. Grove, Phil. Trans. Roy. Soc. London, 5, 87 (1852)
    13.W.R. Grove, Phil. Mag., 5, 203 (1853)
    14.董家齊, 陳寬任, “奇妙的物質第四態-電漿”, 科學發展, 354期, 2002, p.52–59
    15.金原粲, “薄膜的基本技術”, 日本東京大學出版會社,1987年5月, P.3
    16.宋健民, ”以物理氣相沉積(PVD)鍍類似鑽石碳膜(DLC)(中)”, 工業材料148期, P.177
    17.S.K. Zheng, T.M. Wang, G. Xiang, C. Wang, Photocatalytic activity of nanostructure TiO2 thin films prepared by dc magnetron sputtering method, Vacuum 62 (2001) 361–366
    18.W. Zhang, Y. Li, S. Zhu, F. Wang, Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering, Surface and Coatings Technology 182 (2004) 192–198
    19.M.S. Wong , H.P. Chou, T.S. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films 494 (2006) 244 – 249
    20.P. Alexandrov, J. Koprinarova and D. Todorov, institute of Solid State Physics, Bulgarian Academy of Sciences, Blvd. Tzarigradsko Chaossee 72, Sofia, Bulgaria, Dielectric properties of TiO2 films reactively sputtered from Ti in an RF magnetron, Vacuum,volume 47,number III (1996) 1333–1336
    21.S.K. Zheng, G. Xiang, T.M. Wang, F. Pan, C. Wang, W.C. Hao, Photocatalytic activity studies of TiO2 thin films prepared by r.f. magnetron reactive sputtering, Vacuum 72 (2004) 79–84
    22.Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering, Vacuum 81 (2007) 627–631
    23.P. Zeman, S. Takabayashi, Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate, Surface and Coatings Technology 153 (2002) 93–99
    24.X.T. Zhao, K. Sakka, N. Kihara, Y. Takata, M. Arita, M. Masuda, Hydrophilicity of TiO2 thin films obtained by RF magnetron sputtering deposition, Current Applied Physics 6 (2006) 931–933
    25.X.T. Zhaoa, K. Sakkaa, N. Kihara, Y. Takadab, M. Aritaa, M. Masuda, Structure and photo-induced features of TiO2 thin films prepared by RF magnetron sputtering, Microelectronics Journal 36 (2005) 549–551
    26.T.M. Wang, S.K. Zheng, W.C. Hao, C. Wang, Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method, Surface and Coatings Technology 155 (2002) 141–145
    27.B. Window, ”Recent advances in sputter deposition”, Surface and Coatings Technology, Vol.71 (1995) 93-97
    28.D. P. Monaghan, D. G. Teer, K. C. Laing, I. Efeoglu and R. D. Arnell, “Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering”, Surface and Coatings Technology, Vol.59 (1993) 21–25
    29.P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, Vol.56 (2000) 159–172
    30.M. H. Yang, “高密度電漿鍍膜技術專題-Pulsed Magnetron Sputtering”, 工業材料雜誌, 95年4月, 232期
    31.The American Ceramic Society Inc. ”Phase Diagrams for Ceramics Figure.” (1975) 4150–4999
    32.K. J. Shieh, MS, Min Li, Y. H. Lee, S. D. Sheu, Y. T Liu, Y. C. Wang, Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light, Nanomedicine: Nanotechnology, Biology, and Medicine 2 (2006) 121– 126
    33.P. Zeman, S. Takabayashi, Nano-scaled photocatalytic TiO2 thin films prepared by magnetron Sputtering, Thin Solid Films 433 (2003) 57–62
    34.K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surface & Coatings Technology 191 (2005) 155– 160
    35.M. Kamei, T. Mitsuhashi, Hydrophobic drawings on hydrophilic surfaces of single crystalline titanium dioxide: surface wettability control by mechanochemical treatment, Surface Science 463 (2000) L609–L612
    36.I. Justicia, G. Garcia, L. Va´zquez, J. Santiso, P. Ordejo´n, G. Battiston, R. Gerbasi, A. Figueras, Self-doped titanium oxide thin films for efficient visible light photocatalysis An example: onylphenol photodegradation, Sensors and Actuators B 109 (2005) 52–56
    37.Yong Cheol Hong, Chan Uk Bang, Dong Hun Shin, Han Sup Uhm, Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma, Chemical Physics Letters 413 (2005) 454–457
    38.Rorert A. Surr and H. myers, Hughes Research Laboratories, Culver City, Calif., Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Analytical chemistry, 760–762
    39.Rocl´o Silveyra, Luis De La Torre Sa´enz, Wilber Antu´nez Flores,V. Collins Martl´nez, A. Aguilar Elgue´zabal ,Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation, Catalysis Today 107–108 (2005) 602–605
    40.P. Schewe, J. Riordon, B. Stein, Physical News Update, 622, 1, 2003
    41.藤嶋昭/橋本和人/渡部俊也,”圖解光觸媒”,世茂出版有限公司,P.120–121
    42.http://zh.wikipedia.org/w/index.php?title=MRSA&variant=zh-tw#_note-Barron-0#_note-Barron-0
    43.J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A.R. Gonzilez-Elipe, A. Fernbdez, Characterization and photocatalytic activity in aqueous medium of Ti02 and Ag- Ti02 coatings on quartz, Applied Catalysis B: Environmental 13 (1997) 219–228
    44.B. Xin, P. Wang, D. Ding , J. Liu, Z. Ren, H. Fu, Effect of surface species on Cu-TiO2 photocatalytic activity, Applied Surface Science 254 (2008) 2569–2574
    45.X. Zhang, L. Lei, One step preparation of visible-light responsive Fe–TiO2 coating photocatalysts by MOCVD, Materials Letters 62 (2008) 895–897
    46.C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, H. Tamiaki, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film, Thin Solid Films 516 (2007) 5881–5884
    47.M. Katoh , H. Aihara, T. Horikawa, T. Tomida, Spectroscopic study for photocatalytic decomposition of organic compounds on titanium dioxide containing sulfur under visible light irradiation, Journal of Colloid and Interface Science 298 (2006) 805–809
    48.Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension, Solar Energy 82 (2008) 706–713
    49.S. Joung, T. Amemiya, M. Murabayashi, Kiminori Itoh , Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalyst,
    Applied Catalysis A: General 312 (2006)20–26
    50.K. Hashimoto, H. Irie and A. Fujishima, TiO2 photocatalysis: A historical overview and future prospects, Japanese Journal of Applied Physics, Vol. 44, No. 12 (2005) 8269–8285
    51.Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering, Vacuum 81 (2007) 627–631
    52.D. Herˇman, J. Sˇicha, J. Musil, Magnetron sputtering of TiOxNy films, Vacuum 81 (2006) 285–290
    53.T. Arai, H. Fujita and M. Watanabe, “Evaluation of adhesion strength of thin hard coatings”, Thin Solid Films, Vol.154, 1987,P.387-401
    54.Janice Haney Carr, Jeff Hageman, M.H.S. , Department of health and human services, centers for disease control and prevention (CDC), http://phil.cdc.gov/phil/quicksearch.asp
    55.http://web.phys.ntu.edu.tw/asc/FunPhysExp/ModernPhys/exp/Microsoft%20Word%20-%20semiconductor%20photoluminescence.pdf

    下載圖示 校內:2011-06-27公開
    校外:2011-06-27公開
    QR CODE