| 研究生: |
蘇信嘉 Su, Hsin-Chia |
|---|---|
| 論文名稱: |
新型電感結構之開發:壓控振盪器之應用及雜訊耦合之探討 Development of a Novel Inductor:Application to VCO and Study on Noise Coupling |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 壓控振盪器 、新型電感 、超寬頻 |
| 外文關鍵詞: | novel inductor, VCO, UWB |
| 相關次數: | 點閱:99 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們提出了兩種新型電感架構。在射頻電路中,特別是壓控振盪器之設計,電感是最重要的元件。因此針對電感的使用上,我們將此新型電感應用於振盪器中。
在射頻積體電路系統中,整合性的需求越來越高的情況下,每個射頻電路方塊將會被整合進去晶片中。因此系統之雜訊的抑制能力必須相對的提高,否則電路間雜訊互相影響的情況越嚴重,則會造成各元件間的特性效能越降低。嚴重時甚至會使其他元件的功能失去正常的工作狀態而造成電路誤動作。根據上述所說的雜訊耦合量之間的問題,我們設計出第一個新型的電感來解決傳統型的電感,不管是螺旋式電感、或是對稱式電感,其所造成嚴重的雜訊耦合量問題。第二個新型電感則是解決第一顆新型電感無法提高感值的缺點。也就是說我們預期這個新型的電感除了減少電路之間的雜訊耦合量,還能能夠增加其可用性,並使系統電路間互相干擾的能量變小,來達到各較好的效能。
在新型電感的設計中,我們改善傳統型螺旋電感無法抵抗外來磁場的缺點。並且針對外徑、線寬、線距、以及圈數,做電性特性之模擬與分析。探討其變異量對感值與品質因素的影響。然後對於新型電感的架構做進一步的改善,從新型電感(I)到新型電感(III),使其使用性更加完善,減少其不便性。在新型電感與傳統螺旋電感的比較之下,新型電感抑制雜訊耦合量的能力比傳統型電感強之外,此外面積也比傳統型電感來的小。
最後將所設計的電感應用在射頻電路的振盪器上。在振盪器的使用上,則是利用電感與電容當作共振腔以及用互補式交錯耦合架構來完成。此振盪器其操作頻率應用在6.336 GHz,符合超寬頻的應用之載頻頻率之一。然後藉由觀察雜訊耦合量的大小去驗證新型電感,的確可以使得雜訊耦合量少於傳統型螺旋電感。根據實驗結果,其操作頻率為7.1GHz,而且新型電感所產生的雜訊耦合量也確實比傳統型電感小。這結果意味著此新型電感是能夠應用於射頻電路當中,並且有效的抑制雜訊耦合量,進一步減少電路間的互相影響與干擾。
The novel inductors have been presented in this dissertation. In the radio-frequency integrated circuit (RFIC), inductors are constantly used for the RF circuit designs, especially for voltage-controlled oscillator (VCO). Hence concerning the use of the inductors, we will apply the novel inductor into the VCO.
As the integration requirements get more and more in the RFIC system, every RF block will be integrated into the chip. Therefore the ability of restraining noise must be enhanced relatively, or the mutual influences between the circuit blocks are stronger to make every element’s performance low. Even it will make the element’s function not to work ordinarily and then let the circuit get wrong function. According to the problem of the coupling effect above discussion, we design three novel inductors to solve the problem the traditional inductor induces coupling effect. On the other words, we expect that the novel inductor is able to decrease the noise coupling in order to reduce the mutual interfering power between the circuits of system and get better performance.
We improve the defect the conventional spiral inductor cannot to resist the external magnetic field’s interference in the design of the novel inductor, and directing the radius, width, space, and turns, we simulate and analyze the characters of the inductors in order to discuss the influences of variations on inductance and quality factor. Then what are further improved for the novel inductor’s structures from the novel inductor (I) to novel inductor (III) makes the usability flawless and decreases the inconvenience. At the comparison between the novel inductor and traditional spiral inductor, the ability the novel inductor resists the coupling power is stronger than the traditional inductor, besides the area of the novel inductor is also smaller than conventional inductor.
Finally, the designed inductor is applied to VCO in the RFIC. Then in the use of VCO, this novel inductor and varactors are utilized to be resonant tank and be implemented to VCO by complementary cross-couple pair. The operating frequency of VCO is in 6.336 GHz, and that conforms to the applying carrier frequency in the sub-bank of UWB. Then according to observing magnitude of the noise coupling to verify the novel inductor, the novel inductor is sure able to make the noise coupling less than traditional inductor. In the measurement result, the operating frequency is 7.1 GHz, and the coupling the novel inductor induces is less than conventional inductor indeed.
Consequently, this result imply this novel inductor is capable of applying into the RFIC, and effective in restrain the noise coupling to further decrease the influence and interference between the circuits.
References
[1] 王俊元, "具自我頻率校正功能的鎖相迴路", 國立成功大學電機工程研究所碩士論文,民國九十五年
[2] Hisayo Sasaki Momose, Senior Member, IEEE, Eiji Morifuji, Member, IEEE, Takashi Yoshitomi, Tatsuya Ohguro, Masanobu Saito, and Hiroshi Iwai, Fellow, IEEE,"Cutoff Frequency and Propagation Delay Time of 1.5-nm Gate Oxide CMOS."IEEE Transactions on Electron Devices, Vol. 48, No. 6, JUNE 2001
[3] MultiBand OFDM Alliance SIG, "Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a," Sep. 14, 2004
[4] Kazimier Siwiak, Debra Mckeown "Ultra-Wideband Radio Technology, " John Wiley
[5] http://www.fcc.gov/oet/ea/presentations/files/may04/May_04-Ultra-Wideband-AL.pdf
[6] Remco C.H. van de Beek, Domine M. W. Leenaerts, and Gerard van der Weide, "A fast-hopping single-PLL 3-band MB-OFDM UWB synthesizer," IEEE Journal of Solid-State Circuits, Vol.411, Issue 7, pp.1522-1529, July 2006
[7] Jri Lee, "A 3-to-8 Ghz fast-hopping frequency synthesizer in 0.18 um CMOS technology," IEEE Journal of Solid-State circuits, Vol.40, Issue 3,pp.566-573, March 2006.
[8] Tzuen-Hsi Huang and Jia-Lun Wang, “New frequency plan and reconfigurable 6.6/7.128 GHz CMOS quadrature VCO for MB-OFDM UWB application,” in IEEE 2007 International Microwave Symposium, Honolulu HA, USA, Jun. 2007, pp.843-846.
[9] Chung-Yu Wu, Chi-Yao Yu, "A 0.8V 5.9GHz WIDE TUNING RANGE CMOS VCO USING INVERSION-MODE BANDSWITCHING VARACTORS," IEEE International Symposium on Circuits and Systems,ISCAS 2005.
[10] Jonghae Kim, Jean-Olivier Pouchart, Noah Zamdmer, Robert Trzcinski, Kun Wu, Blaine Jeffrey Gross, Moon Kim, "A 44GHZ Differentially Tuned VCO with 4GHz Tuning Range in 0.12um SOI CMOS" ISSCC, 2005/SESSION 22/PLL, DLL,AND VCOs/22.4
[11] Zhenbiao Li, kenneth O., "A900-MHz 1.5-V CMOS Voltage-Controlled Oscillator Using Switched Resonators With a Wide Tuning Range," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 4, April 2003
[12] Shenqun Tang, Yanling Shi,Tianxing Luo,Yanfang Ding, Yong Wang, Jun Zhu, Shoumian Chen, and Yunhang Zhao, "A Novel Structure of Non-planar RF Spiral Inductor Based on Silicon", Solid-State and Integrated Circuit Technology, 2006. ICSICT '06. 8th International Conference on Oct. 2006 Page(s):269 - 271
[13] H. B. Erzgraber, T. Grabolla, H. H. Richter, P. Schley, and A.Wolff, “A novel buried oxide isolation for monolithic RF inductors on silicon,” in IEDM Tech. Dig., 1998, pp. 535–539.
[14] T. Wang, C.-H. Chen, Y.-S. Lin, and S.-S. Lu, “A micromachined CMOS distributed amplifier by CMOS compatible ICP deep-trench technology,” IEEE Electron Devices Lett., vol. 27, no. 4, pp. 291–293, Apr. 2006.
[15] L. L.L. Lurng Shehng, L. Chungpin, L. C.-L.L. Chung-Len Lee, H. Tzuen-His, D. D.-L.D. Duan-Lee Tang, D. T.D. Ting Shien, and Y. Tsing-Tyan, “Isolation on Si wafers by MeV proton bombardment for RF integrated circuits,” IEEE Trans. Electron Devices, vol. 48, pp. 928–934, May 2001.
[16] H. Jiang, Y. Wang, J.-L. Yeh, and N. C. Tien, “On-chip spiral inductors suspended over deep copper-lined cavities,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2415–2423, Dec. 2000.
[17] T.-S. Chen, C.-Y. Lee, and C.-H. Kao, “An efficient noise isolation technique for SOC application,” IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 255–260, Feb. 2004.
[18] Yu Cao, Robert A. Groves, Noah D. Zamdmer, Jean-Olivier Plouchart, Richard A. Wachnik, Xuejue Huang, Tsu-Jae King, and Chenming Hu "Frequency-Independent Equivalent Circuit Model for on-chip Spiral Inductors"ieee 2002 custom intergated circuit conference
[19] D. K. Cheng, Field and Wave Electromanetics, Addison-Wesley Publishing Company, 1989.
[20] Jan Craninckx, student Member, IEEE, and Michiel S. J. Steyaert, Senior Member, IEEE "A 1.8-GHz Low-Phase-Noise CMOS VCO Using Optimized Hollow Spiral Inductors"ieee journal of solid-state circuits, vol. 32, NO. 5, May 1997
[21] William B. Kuhn, Senior Member, IEEE, and Noureddin M. Ibrahim, Senior Member, IEEE "Analysis of Current Crowding Effects in Multiturn Spiral Inductors" ieee transactions on microwave theory and techniques, vol. 49, NO. 1, January 2001
[22] Sheng-Yuan Lee "An Inductor with Taper Stacked Metal on Silicon Chip" proceedings of Asia-Pacific Microwave Conference 2006
[23] Nobuyuki Itoh, Hideaki, Masuoka, Shin-ichi Fukase, Ken-ichi Hirashiki, and Minoru Nagata "Twisted Inductor VCO for Supressing On-chip Interferences" Proceedings of Asia-Pacific Microwave conference 2007
[24] B. Viala, A. S. Royet, R. Cuchet, M. Aid, P. Gaud, O. Valls, M. Ledieu, and O. Acher "RF Planar Ferromagnetic Inductors on Silicon"ieee transactions on magnetics, vol. 40, no. 4 july 2004
[25] Niranjan A. Talwalkar, C. Patrick Yue, and S. Simon Wong, ”Analysis and Synthesis of On-Chip Spiral Inductors,” IEEE Transactions on Electron Devices, Vol. 52, No. 2, February 2005.
[26] H. Cong et al., “A 10 Gb/s 16:1 multiplexer and 10 GHz clock synthesizer in 0.25 mm SiGe BICMOS,” in Proc. ISSCC, Feb. 2001, pp3 80-81.
[27] B. Kleveland, C. H. Diaz, D. Dieter, L. Madden, T. J. Lee, and S. S. Wong, “Monolithic CMOS distributed amplifier and oscillator,” in Proc. ISSCC, Feb. 1999, pp. 70-71.
[28] Heng-Ming Hsu, Jen-Zien Chang, Hung-Chi Chien “Coupling Effect of On-Chip Inductor With Variable Metal Width,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 7. JULY 2007
[29] A. Ismail and A. A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[30] B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits Devices Mag., vol. 12, no. 5, pp. 12–25, Sep. 1996.
[31] N.-J. Oh and S.-G. Lee, “Current reused LC VCOs,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 736–738, Nov. 2005.
[32] Ali Hajimiri, and Thomas H. Lee, "A General Theory of Phase Noise in Electrical Oscillators" IEEE Journal of Solid-State Circuits, Vol. 33, No. 2, February 1998
[33] David A. Johns, and Ken Martin "ANALOG INTEGRATED CIRCUIT DESIGN"
[34] D. B. Lesson, "a simple model of feedback oscillator noise spectrum," Proc. IEEE, vol. 54, no.2, pp. 329-330, Feb 1966
[35] John G. Maneatis and Mark A. Horowitz, "Precise Delay Generation Using Coupled Oscillators", IEEE Journal of Solid-State Circuits, Vol. 28, NO. 12, DECEMBER 1993
[36] Giovanni Bianchi, "Pahse-locked Loop Synthesizer Simulation"
[37] Behzad Razavi, "Design of Analog CMOS Integrated Circuits"
[38] Pietro Andreani and Sven Mattisson. "On the Use of MOS Varactors in RF VCO's" IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO.6, JUNE 2000
[39] A. Hajimiri and T.H. Lee, "Design issues in CMOS differential LC oscillators," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 5, MAY 1999
[40] Albert Jerng, Student Member, IEEE, and Charles G. Sodini, Fellow, IEEE, "The Impact of Device Type and Sizing on Phase Noise Mechanisms" IEEE JOURNAL OF SOLID-STATE CIRCUIT, VOL. 40. NO. 2, FEBRUARY 2005
[41] "Integtated circuit design for high-speed frequency synthesis" Jonn Rogers, Calvin Plett, Foster Dai, 2006 ARTECH HOUSE, INC.
[42] Fong, N., et al., "Phase Noise Improvement of Deep Submicron Low-Voltage VCO" Proc. Esscirc 2002, Florence, Italy, September 2002, pp. 811-814
[43] Sang-Woong Yoon, Member IEEE, Stephan Pinel, Member, IEEE, and Joy Laskar, Fellow, IEEE, "High-Performance 2-GHz CMOS LC VCO With High-Q Embedded Inductors Using Wiring Metal Layer in a Package" IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 29, NO. 3, AUGUST 2006
[44] Neric H. W. Fong, Jean-Olivier Plouchart Noah Zamdmer, Duixian Liu, Lawrence F. Wagner Calvin Plett, and N. Garry Tarr "Design of Wide-Band CMOS VCO for Multiband Wireless LAN Applications" IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 8. AUGUST 2003
[45] Jonathan P. Comeau, Laleh Najafizadeh, Joel M. Andrews, A. P. Gnana Prakash, and John D. Cressler, “An Exploration of Substrate Coupling at K-band Between a SiGe HBT Power Amplifier and a SiGe HBT Voltage-Controlled-Oscillator,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 5. MAY 2007
[46] J. P. Comeau and J. D. Cressler, “Microwave VCO susceptibility to substrate noise in a fully-integrated 150 GHz SiGe HBT BiCMOS technology,” in IEEE MTT-S Int. Dig., Jun. 2005, pp. 2235–2238.
[47] N. Checka, D. D.Wentzloff, A. Chandrakasan, and R. Reif, “The effect of substrate noise on VCO performance,” in Proc. IEEE Rad. Freq. Integ. Circuits Symp., Jun. 2005, pp. 523–526.
[48] C. Soens, G. Van der Plas, P.Wambacq, and S. Donnay, “Performance degradation of an LC-tank VCO by impact of digital switching noise,” in Proc. 30th Eur. Solid-State Circuits Conf., Sep. 2004, pp. 119–122.
[49] Popplewell, P.H.R.; Amaya, R.E.; Cloutier, M.; Plett, C,” Calibration-free on-chip inductor coupling experiment with injection-lockable VCOs” Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting 13-14 Sept. 2004 Page(s):261 - 264