研究生: |
蔡榮哲 Tsai, Jung-che |
---|---|
論文名稱: |
水熱法合成二氧化鈦奈米棒陣列之研究 Preparation of Titania Nanorod Arrays by a Hydrothermal Process |
指導教授: |
洪敏雄
Hon, Min-hsiung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 水熱法 、二氧化鈦 、一維奈米材料 |
外文關鍵詞: | hydrothermal process, titania, 1D nanomaterials |
相關次數: | 點閱:98 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦奈米結構具備無毒性、物化性質穩定,以及擁有高比表面積的特性,使得科學家致力於以簡單步驟及低成本的合成技術來製備二氧化鈦奈米結構。本研究提出以傳統的水熱法結合晶種層觀念,研究在晶種層及透明導電玻璃上製備二氧化鈦一維奈米結構,並改變製程參數,分析其特性及釐清成長機制。
本研究將Ti(OBu)4含鈦前驅物置於鹽酸水溶液中,以晶種層及透明導電玻璃作為基板,經水熱法在基板上形成二氧化鈦奈米棒陣列。研究結果得知經水熱法合成的二氧化鈦奈米棒為具有結晶性良好之金紅石相,而且每支奈米棒都是單晶結構,不需額外的退火處理。藉由晶種層添加PVP量,可以控制奈米棒密度,進而影響其奈米結構外貌型態。以透明導電玻璃作為基板,改變鹽酸水溶液中的前驅物濃度,在固定時間下,分別得到20nm的TiO2薄膜、420nm或1.5μm的TiO2奈米棒陣列及3.5μm的TiO2厚膜。
選用0.5 ml Ti(OBu)4添加入30 ml 的鹽酸水溶液中,改變反應時間及反應溫度等參數,可控制奈米棒的長度與直徑,發現最佳的參數是8小時的水熱法合成,溫度在150℃, 得到長度與直徑都較為均勻且較為獨立站立的TiO2奈米棒陣列,長度平均約為1.6μm,直徑約為 110 nm。以8小時作一次循環,分多次成長奈米棒陣列,奈米棒長度及直徑分別由1.6μm 、110 nm增加到3.5μm、378 nm,但TiO2奈米棒表面會相互接觸,不利於高比表面積特性。
Recently, one-dimensional structures, especially nanorod/wire/tube arrays, have attracted much attention owing to their excellent properties because of their large specific surface area. With the advantages of non-toxicity and chemical stability, TiO2-based nanoarchitectures have been focused for the application in the development of photo-catalyst and photoelectrochemical cells. To date, a number of approaches have been reported to fabricate TiO2 nanorod/wire/tube arrays. Hydrothermal synthesis of TiO2 nanorod arrays is a promising approach due to its ease of processing, fast reaction rate and low cost. Therefore, we combine the hydrothermal process with the seed layer concept to fabricate nanorod arrays of TiO2 on the seed layer and TCO/glass. The effect of experimental parameters on the growth characteristics and mechanisms of nanorods is evaluated.
In this research, a facile hydrothermal process using Ti(OBu)4 as the precursor is developed for the first time to grow oriented single-crystalline rutile TiO2 nanorod arrays on seed layer and TCO/glass substrates. The effect of PVP added to sol-derived seed layer is found to control the density of nanorods and affects the morphologies of nanorod arrays. Tuning the concentration of initial precursor in HCl solution, different types of TiO2 structures including 20 nm TiO2 thin films, 420 nm~1.5 μm TiO2 nanorod and 3.5 μm TiO2 thick films are obtained on FTO/glass.
The growth parameters including the growth time, the growth temperature and the initial precursor concentration could be selectively chosen to prepare TiO2 nanorod arrays with desired lengths and densities on FTO/glass substrate. It is found that free-standing TiO2 nanorod arrays are obtained at 150℃ for 8 hours. The average length and diameter of TiO2 nanorods are 1.6μm and 110 nm, respectively. We chose 8 hours as a cycle of growth time. After 1~3 cycle times of growth reactions, the length and diameter of TiO2 nanorods increase from 1.6 μm and 110 nm to 3.5 μm and 378 nm, respectively.
[1] Y. Cui, and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks” Science, 291, 851(2001)
[2] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride Nanowire Nanodevices” Nano Lett., 2, 101(2002)
[3] X. Duan, Y. Huang, Y. Cui, and C. M. Lieber “Nonvolatile Memory and Programmable Logic From Molecule-Gated Nanowires” Nano Lett. 2, 487(2002)
[4] L. X. Chen, Tijana Rajh, Z. Y. Wang, and C. Marion, “XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions” J. Phys. Chem. B, 101, 10688(1997)
[5] A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, “TiO2-B Nanowires” Angew. Chem., 116, 2336(2004)
[6] Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes” J. Phys. Chem. B, 106, 1274(2002)
[7] J. P. Li, Y. Xu, W. Wei, D. Wu, and Y. H. Sun, “Template-directed assembly of ZnS nanoclusters into uniform nanosheets” Colloids Surf. A: Physicochem. Eng. Aspects, 241, 173(2003)
[8] J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells” J. Photochem. Photobiol. A: Chem., 180, 184(2006)
[9] T. Kasuga, M. Hiramatsu, A. Hoson, A. Sekino, and K. Niihara. “Titania Nanotubes Prepared by Chemical Processing” Adv. Mater. 11, 1307(1999)
[10] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides” Science, 291, 1947(2001)
[11] L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and Randolph Treece, “The effect of annealing on the structure and dielectric properties of BaxSr1 – xTiO3 ferroelectric thin films” Appl. Phys. Lett., 69, 25(1996)
[12] H. Bach, and D. Krause, Thin Films on Glass, Springer, Heidelberg, 1997.
[13] H. Hiroshi, and K. Takao, SPIE, 67, 1758(1992)
[14] J. Cao, J. Z. Sun, H. Y. Li, J. Hong, and M. Wang, “A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires” J. Mater. Chem., 14, 1203(2004)
[15] D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, and F. C. Walsh, “Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes” J. Phys. Chem. B, 109, 19422(2005)
[16] O. K. Varghese, D. Gong, M. Paulose, K. O. Ong, E. C. Dickey, and C. A. Grimes, “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure” Adv. Mater., 15, 624(2003)
[17] L. Kavan, M. Graetzel, J. Rathousky, and A. Zukal, “Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties” J. Electrochem. Soc. 143, 394(1996)
[18] S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, “Application of titania nanotubes to a dye-sensitized solar cell” Electrochemistry, 70, 418(2002)
[19] N.Ozer, “Reproducibility of the coloration processes in TiO2 films” Thin Solid Films 214, 17(1992)
[20] C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G. A. Niklasson, C. G. Ribbing, D. Rönnow, M. Strømme Mattsson and M. Veszelei, “Towards the smart window: progress in electrochromics” J. Non-Cryst. Solid, 218, 273(1997)
[21] M. Law, L. E. Greene, J. C. Johnson, R. J. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells” Nat. Mater., 4, 455(2005)
[22] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells” Nano Lett., 6, 215(2006)
[23] K. Zhu, N. R. Neale, A. Miedaner, and A. Rank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays” Nano Lett., 7, 69(2007)
[24] E. Enache-Pommer, J. E. Boercker, and E. S. Aydil, “Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells” Appl. Phys. Lett., 91, 123116(2007)
[25] R. Marchand, L. Brohan and M. Tournoux, “TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17” Mat. Res. Bull., 15, 1129(1980)
[26] T. E. Weirich, M. Winterer, S. Seifried, H. Hahn, and H. Fuess, “Rietveld Analysis of Electron Powder Diffraction Data from Nanocrystalline Anatase, TiO2” Ultramicroscopy, 81, 263(2000)
[27] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15K and 295K” J. of the Am. Chem. Soc., 109, 3639(1987)
[28] M. Latroche, L. Brohan, R. Marchand, and M. Tournoux, “New hollandite oxides: TiO2(H) and K0.06TiO2” J. of Solid State Chem., 81, 78(1989)
[29] J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki and H. Takei, “Topotactic Oxidation of Ramsdellite-Type Li0.5TiO2, a New Polymorph of Titanium Dioxide: TiO2(R)” J. of Solid State Chem., 113, 27(1994)
[30] E. P. Meagher and G. A. Lager, “Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structure of rutile and brookite at high temperature” Canadian Mineralogist, 17, 77(1979)
[31] P. Y. Simons and F. Dachille, “The structure of TiO2(II), a high-pressure phase of TiO2” Acta. Crystal., 23, 334(1967).
[32] Per Kofstad, Nonstoichiometry: diffusion, and electrical conductivity in binary metal oxides, John Wiley & Sons, Inc., New York(1972).
[33] U. Diebold., “The surface science of titanium dioxide” Surf. Sci. Reports, 48, 53(2003).
[34] Krishnankutty-Nair P. Kumar, Klaas Keizer and Anthonie J. Burggraaf, “Textural Evolution and Phase Transformation in Titania Membranes: Part 1. Unsupported Membranes” J. Mater. Chem., 3, 141(1993).
[35] P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array” Langmuir, 12, 1411(1996).
[36] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications” Adv. Mater., 15, 353(2003).
[37] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation” J. Mater. Res., 16, 3331(2001).
[38] L. V. Taveira, J. M. Macak, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, “Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F/(NH4)2SO4 Electrolytes” J. Electrochem. Soc., 152, B405(2005).
[39] C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte” J. Phys. Chem. B, 109, 15754(2005)
[40] A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, “Titanium oxide nanotubes prepared in phosphate electrolytes” Electrochem. Commun., 7, 505(2005)
[41] H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirot-na, and P. Schmuki, “Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes” Electrochem. Commun., 7, 576(2005)
[42] J. M. Macak, K. Sirotna, and P. Schmuki, “Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes” Electrochim. Acta, 50, 3679(2005)
[43] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications” Adv. Mater., 18, 2807(2006)
[44] K. Byrappa and Masahiro Yoshimura, “Handbook of Hydrothermal Technology, 1st Ed” Noyes Publications (2001)
[45] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of Titanium Oxide Nanotube” Langmuir, 14, 3160(1998)
[46] C. H. Sun, N. X. Wang, S. Y. Zhou, X.J. Hu, S. Y. Zhou and P. Chen, “Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film” Chem. Commun., 3293(2008)
[47] Lori E. Greene, Matt Law, Joshua Goldberger, Franklin Kim, Justin C. Johnson, Y. F. Zhang, Richard J. Saykally, and Peidong Yang “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays” ACIE, 42, 3031(2003)
[48] Z. Chen, and L. Gao, “A facile route to ZnO nanorod arrays using wet chemical method” J. Cryst. Growth, 293, 522(2006)
[49] M. Abd-Lefdil, R. Diaz, H. Bihri, M. Ait Aouaj and F. Rueda, “Preparation and characterization of sprayed FTO thin films” Eur. Phys. J. Appl. Phys., 38, 217(2007)
[50] C. J. Howard, T. M. Sabine and F. Dickson, “Structural and thermal parameters for rutile and anatase” Acta Crystallogr. B, 47, 462(1991)
[51] H. M. Cheng, J. M. Ma, Z. G. Zhao, and L. M. Qi, “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles” Chem. Mater., 7, 663(1995)
[52] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "Oriented Attachment" Mechanism” J. Am. Chem. Soc., 126, 14943(2004)
[53] Keita Kakiuchi, Eiji Hosonob, Hiroaki Imai, Toshio Kimuraa, and Shinobu Fujihara, “{1 1 1}-faceting of low-temperature processed rutile TiO2 rods” J. Crystal Growth, 293, 541(2006)
[54] H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, “Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets” Nature, 453, 638(2008)
[55] W. Z. Zhong, S. K. Hua, and E. W. Shi, “The structure and morphology of polar crystal” J. Synthetic Crystals, 20, 350(1991).
[56] W. Z. Zhong, G. Z. Liu, E. W. Shi, S. K. Hua, D. Y. Tang, and Q. L. Zhao, “Growth Units and Formation Mechanism of the Crystals under Hydrothermal Conditions” Sci. China, B, 37, 1288(1994)
[57] P. Hartman, and W. G. Perdok, “On the Relations Between Structure and Morphology of Crystals. I” Acta Cryst., 8, 49(1955)
[58] P. Hartman, and W. G. Perdok, “On the Relations Between Structure and Morphology of Crystals. II” Acta Cryst., 8, 521(1955)
[59] P. Hartman, and W. G. Perdok, “On the Relations Between Structure and Morphology of Crystals. III” Acta Cryst., 8, 525(1955)
[60] M. P. Zheng, M. Y. Gu, Y.P. Jin, H. H. Wang, P. F. Zhu, P. Tao, and J. B. He, “Effects of PVP on structure of TiO2 prepared by the sol-gel process” Mater. Sci. Eng. B, 87, 197(2001)
[61] Y. Lan, X. P. Gao, H. Y. Zhu, Z. F. Zheng, T. Y. Yan, F. Wu, S. P. Ringer, and D. Y. Song, “Titanate Nanotubes and Nanorods Prepared from Rutile Powder” Adv. Funct. Mater., 15, 1310(2005)
[62] J. G. Yu, X. J. Zhao, J. C. Du and W. M. Chen, “Preparation, Microstructure and Photocatalytic Activity of the Porous TiO2 Anatase Coating by Sol-Gel Processing” J. of Sol-Gel Science and Technology, 17, 163(2000)
[63] H. Z. Zhang and Jillian F. Banfield, “Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2” J. Phys. Chem. B, 104, 3481(2000)
[64] K. Lu, and Y. Li, “Homogeneous Nucleation Catastrophe as a Kinetic Stability Limit for Superheated Crystal” Phys. Rev. Lett., 80, 4474(1998)