簡易檢索 / 詳目顯示

研究生: 胡凱程
Hu, Kai-Cheng
論文名稱: 深水波列非線性調變之數值解析
Nonlinear modulation in deep water wave -- A numerical study
指導教授: 黃煌煇
Hwung, Hwung-Hweng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 151
中文關鍵詞: 副頻不穩定碎波空間演變模式調變非線性薛丁格方程式非線性波列
外文關鍵詞: modulation, NLS, Sideband instability, nonlinear wave train, spatial model, breaking
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以數值模擬方法研究非線性深水波列傳播過程之演變。基於弱非線性與波列緩慢調變之假設,利用攝動參數法及虛擬微分運算子轉換推導得到移動座標系統下,時間演變之四階非線性薛丁格方程式(nonlinear Schrödinger equation, NLS)。以虛擬頻譜轉換法(pseudospectral transform)配合兩時間步階處理時間微分項,完成數值模式之建構。數值模擬的結果並與物理模型實驗資料作比較。

      對於非碎波試次,於兩波(雙頻波)試次即使波列傳播相當的距離,水位振幅及全頻譜圖仍有很好的相似性。於三波(一主頻及一組微小副頻)之未碎波試次,在低副頻達最大成長率(調變達最強)前於水位振幅及全頻譜圖皆有很好的相似性,其後數值模擬能量往高頻傳遞機制,較實際機制不明顯以致相關預測不是很精準,但趨勢大致相同。

      而對於碎波試次,同樣在低副頻達最大成長率前水位振幅及全頻譜圖皆有很好的相似性,但其後因數值模式未考慮碎波導致能量消散及改變能量傳輸之機制,致使模式模擬之演變趨勢與實際演變趨勢不符合。因此,本文進一步於模式中加入往昔文獻所提出之模擬碎波效應函式進行模擬,並以三波碎波試次加以驗證,結果顯示現有碎波函式對於碎波後的趨勢大致符合,然對於能量傳輸定量描述能力仍有不及且對於多次碎波後的成長趨勢,有待未來更進一步研究。

      Numerical and physical experiments on nonlinear wave train were conducted in deep water. The evolution of wave train and spectra was investigated in this paper. Based on the assumptions of slowly varying wave train and weak nonlinearity, the evolution of wave train can be described by the nonlinear Schrödinger equation (NLS). Trulsen and Stansberg (2001) derived the spatial domain model of fourth order nonlinear Schrödinger equation. Following the transformation proposed by Lo and Mei (1985), a normalized spatial domain model of fourth order nonlinear Schrödinger equation in moving coordinate system can be derived. The numerical scheme combined with the pseudo-spectra method and split step method for time integration was used to solve the evolution equation, and structured the numerical model. The result of numerical simulation also compared with the experimental data with physical model.

      For non-breaking bichromatic wave case, the periodic modulation and demodulation of wave train were observed in numerical and experimental results. Both the surface elevation and the spectra are matched well with the experimental data, even the wave group propagated certain far distance. For non-breaking three wave cases, constructed by one foundation frequency with a set of two the same small amplitude of sideband frequency, both the amplitude of elevation and the spectra were matched well with the experimental data before the low sideband reached the maximum growth rate. After maximum growth rate, the amplitude of elevation and the spectra didn’t match well with experimental data which was reasoned to the energy spread out the high wave number modes of numerical simulation was less apparent than the actual. But overall the tendency between amplitude and spectra were similar.

      For breaking three wave cases, the amplitude of lower sideband frequency was selectively amplified through the breaking process. Before the wave breaking, the surface elevation and the spectra were consistent with the measured results just such as non-breaking cases. After breaking the evolutional tendency of numerical simulation didn’t matched with experimental data, was reasoned to the unconsidered breaking effect and the incorrect energy translation. The simulation also was compared with the three wave cases include breaking effect by an additional proper damping function. The results showed that the phenomenon about amplitude of lower sideband frequency was selectively amplified through the breaking process. It was expected due to the limited knowledge of wave breaking in deep water. However, the comparison of dimensionless amplitude exhibited the qualitatively matched well, but the quantitatively about describing the energy translation and the evolution after a series of breaking still needed to be researched in the further.

    中文摘要 II Abstract III 目錄 V 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 緒論 1 1-1前言 1 1-2文獻回顧 1 1-3 研究動機 4 1-4 本文大綱 5 第二章 理論推導 6 2-1 空間演變模式 6 2-1-1 四階NLS(Dysthe,1979) 6 2-1-2 四階NLS(Lo and Mei, 1985) 8 2-1-3 四階NLS(Truslen等人, 2000) 9 2-2 時間演變模式 10 2-2-1 四階NLS (Trulsen and Stansberg, 2001) 10 2-2-2 四階NLS(移動座標系統) 11 2-3 外加碎波函式 13 第三章 數值方法 15 3-1 虛擬頻譜轉換方法 15 3-2 時間步階離散方法 16 3-3數值方法之一致性分析 18 3-4數值方法之穩定性分析 22 3-5 數值方法之執行 22 第四章 模式校正與模擬流程 27 4-1 數值校驗 27 4-2 數值模擬之前置作業 27 第五章 結果與討論 29 5-1 水位模擬 29 5-1-1 兩波未碎波試次 29 5-1-2三波未碎波試次 31 5-1-3三波碎波試次 33 5-2 頻譜分析 35 5-2-1兩波未碎波試次 35 5-2-2三波未碎波試次 38 5-2-3三波碎波試次 42 5-3 外加碎波函式之研究 47 第六章 結論與建議 50 6-1 結論 50 6-2 建議 51 Reference 52 附錄A 三階NLS(CSE)之推導 54 附錄B 實驗與數值模擬條件表 57 附錄C 59 C-1 兩波未碎波試次B11F1之時間序列比較圖 59 C-2 三波未碎波試次T49F1之時間序列比較圖 68 C-3 三波碎波試次T82F1之時間序列比較圖 77 附錄D 86 D-1 兩波未碎波試次B11F1之振幅譜圖 86 D-2 三波未碎波試次T49F1之振幅譜圖 103 D-3三波碎波試次T82F1之振幅譜圖 120

    1. Benjamin, T. B. and Feir, J.E. (1967) “The disintegration of wavetrains on deep water. Part 1. Theory.”, J. Fluid Mech., Vol. 27, pp.417-430

    2. Dysthe, K. B. (1979). “Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. ” Proc.R. Soc. Lond. A 369, 105-114.

    3. Lake , B. M., Yuen, H. C., Rungaldier, H. and Ferguson, W.E. (1977) “Nonlinear deep-water waves: theory and experiment. Pat 2. Evolution of a continuous train.”, J. Fluid Mech., Vol.83, part 1, pp49-74.

    4. Lo, E. and Mei, C. C. (1985). “A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation.” J. Fluid Mech. 150, 395-416.

    5. Lo, E. and Mei, C. C. (1985). “Lone-time evolution of surface waves in coastal waters.” Progress Report. Office of Naval Research(Ship Hydrodynamics Program) and the National Science Foundation (Fluid Mechanics Program).

    6. Miles, J.W. (1962) “Transient gravity wave response to an oscillating pressure.”, J. Fluid Mech., Vol. 13, pp.145-150

    7. Melville, W. K. (1982) “The instability and breaking of deep-water waves.”, J. Fluid Mech., Vol. 115, pp. 165-185.

    8. Melville, W. K. (1983) “Wave modulation and breakdown”, J. Fluid. Mech., Vol. 128, pp. 489-506.

    9. Program for Promoting University Academic Excellence,Annual Performance Report
    for Year 2002, National Cheng Kung University.

    10. Trulsen, K. and Dysthe, K. B. (1996). “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. ” Wave Motion 24, 281-289.

    11. Trulsen, K. and Dysthe, K. B. (1997). “ Frequency downshift in three-dimensional wave trains in a deep basin. ” J. Fluid Mech.352, 359-373.

    12. Trulsen, K., Kliakhandler, I., Dysthe, K. B. and Velarde, M. G. (2000). “On weakly nonlinear modulation of waves on deep water. ” Phys. Fluids 12, 2432-2437.

    13. Trulsen, K. and Stansberg, C. T. (2001) “ Spatial Evolution of Water Surface Waves: Numerical Simulation and Experiment of Bichromatic Waves. ” Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference.

    14. Tulin, M. P. and Waseda, T. (1999) “Laboratory observations of wave group evolution, including breaking effects.”, J. Fluid Mech., Vol. 378, pp. 197-232.

    15. 江文山,黃煌煇 “初始均勻波列之非線性調變” 海洋工程學刊(2004),第三卷,第二期,第25-37頁。

    下載圖示 校內:立即公開
    校外:2004-08-25公開
    QR CODE