簡易檢索 / 詳目顯示

研究生: 邱薪育
Ciou, Sin-Yu
論文名稱: 一個適用於三軸MEMS壓電加速規之低功耗讀取電路
A Low Power Readout Circuit for a Tri-axial Piezoelectric MEMS Accelerometer
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 70
中文關鍵詞: 三軸壓電加速規轉阻器逐漸趨近式類比至數位轉換器同時取樣低功耗低面積負擔
外文關鍵詞: Tri-axial piezoelectric accelerometer, transimpedance amplifier (TIA), successive approximation register (SAR) analog-to-digital converter (ADC), simultaneous sampling, low power, low area overhead
相關次數: 點閱:98下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個適用於三軸MEMS壓電加速規之低功耗讀取電路,此設計以台積電180奈米製程實作晶片。此讀取電路由逐漸趨近式類比至數位轉換器與類比前端電路組成,包含轉阻放大器,低通濾波器和帶阻濾波器。此轉阻放大器將加速規感應震動所產生的電流訊號轉換為電壓訊號,並送至濾波器進行放大和濾波。逐漸趨近式類比至數位轉換器的取樣電路則採用提出的同時取樣電路進行替換,以保留三軸訊號之間的相關性以及節省晶片面積。
    量測結果顯示此讀取電路能感測±10個加速度的範圍,加速規的靈敏度為每加速度173.43毫伏。此加速規的非線性度為0.43%,表示輸入加速度和輸出信號之間有良好的線性關係。此讀出電路在供應電壓為1.8伏且每秒取樣十萬次的操作速度下,功率消耗為0.196毫瓦。

    This thesis presents a low power readout circuit for a tri-axial piezoelectric MEMS accelerometer in 0.18-μm CMOS process. The readout circuit is composed of a SAR ADC and an analog front-end, including transimpedance amplifier, low-pass filters and notch filter. The proposed transimpedance amplifier converts the sensed current signals into voltage signals, which is amplified and filtered in the later stages. The sample-and-hold circuit of the SAR ADC is replaced with the proposed simultaneous sampling circuit to reserve the correlation of the tri-axial signals and save the chip area.
    The measurement result shows the sensing range of ±10 g and the sensitivity of 173.43 mV/g. The nonlinearity of 0.43% shows the good linear relationship between the input acceleration and the output signal. The readout circuit consumes the power consumption of 0.196 mW at 1.8 V supply voltage under 100 kS/s sampling rate.

    摘 要 I Abstract II List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Fundamentals of Accelerometers 4 2.1 The Basics of Accelerometers 4 2.1.1 Piezoresistive Accelerometer 4 2.1.2 Capacitive Accelerometer 5 2.1.3 Piezoelectric Accelerometer 6 2.2 Performance Specifications 7 2.2.1 Sensing Range 7 2.2.2 Bandwidth 7 2.2.3 Zero-g Offset 8 2.2.4 Sensitivity 8 2.2.5 Nonlinearity 9 2.2.6 Resonant Frequency 9 2.2.7 Cross-axis Sensitivity 9 2.2.8 Noise Density 10 2.3 Accelerometer Readout Circuit 11 2.3.1 Resistive Accelerometer Readout Circuit 11 2.3.2 Capacitive Accelerometer Readout Circuit 11 2.3.3 Piezoelectric Accelerometer Readout Circuit 12 Chapter 3 Fundamentals of Analog-to-Digital Converter 13 3.1 Analog-to-Digital Converter (ADC) 13 3.1.1 Quantization Error 14 3.1.2 Resolution 15 3.1.3 Accuracy 16 3.2 Static Specifications 16 3.2.1 Offset Error 16 3.2.2 Gain Error 17 3.2.3 Nonlinearity Error 18 3.3 Dynamic Specifications 20 3.3.1 Signal-to-Noise Ratio (SNR) 20 3.3.2 Signal-to-Noise and Distortion Ratio (SNDR) 21 3.3.3 Effective Number of Bits (ENOB) 21 3.3.4 Spurious-Free Dynamic Range (SFDR) 21 3.3.5 Total Harmonic Distortion (THD) 22 3.3.6 Effective Resolution Bandwidth (ERBW) 23 3.3.7 Figure-of-Merit (FoM) 23 3.4 Successive-Approximation Register ADC 24 3.4.1 SAR ADC Operation 24 3.4.2 Capacitor Switching Methods 26 3.4.3 Error Tolerance Techniques 31 Chapter 4 A Readout Circuit for Tri-axial Piezoelectric MEMS Accelerometers 33 4.1 Introduction 33 4.2 Architecture of the Proposed Readout Circuit 34 4.3 Circuit Implementation 36 4.3.1 Transimpedance Amplifier 36 4.3.2 Operational Amplifier 37 4.3.3 Low-pass Filter 38 4.3.4 Notch Filter 40 4.3.5 Bootstrapped Switch 41 4.3.6 Simultaneous Sampling Circuit 42 4.3.7 Dynamic Two-Stage Comparator 46 4.3.8 Capacitive DAC Array 47 4.3.9 Digital Error Correction Decoder 47 4.3.10 Clock Generator 48 Chapter 5 Simulation and Measurement Results 50 5.1 Layout and Chip Floor Plan 50 5.2 Simulation Results 51 5.3 Chip Micrograph and Measurement Setup 56 5.3.1 SAR ADC 57 5.3.2 Readout Circuit 58 5.4 Measurement Results 58 5.4.1 SAR ADC 58 5.4.2 Readout Circuit 60 Chapter 6 Conclusions and Future Works 63 Bibliography 65

    [1] B. Murmann, "ADC Performance Survey 1997-2022," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
    [2] H. S. Bindra, A. -J. Annema, S. M. Louwsma and B. Nauta, "A 0.2 - 8 MS/s 10b flexible SAR ADC achieving 0.35 - 2.5 fJ/conv-step and using self-quenched dynamic bias comparator," IEEE Symposium on VLSI Circuits, 2019, pp. C74-C75, doi: 10.23919/VLSIC.2019.8778093.
    [3] S. -E. Hsieh and C. -C. Hsieh, "A 0.44fJ/conversion-step 11b 600KS/s SAR ADC with semi-resting DAC," IEEE Symposium on VLSI Circuits, 2016, pp. 1-2, doi: 10.1109/VLSIC.2016.7573519.
    [4] L. Kull et al., "A 24-to-72GS/s 8b time-interleaved SAR ADC with 2.0-to-3.3pJ/conversion and >30dB SNDR at nyquist in 14nm CMOS FinFET," IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2018, pp. 358-360, doi: 10.1109/ISSCC.2018.8310332.
    [5] L. Kull et al., "22.1 A 90GS/s 8b 667mW 64× interleaved SAR ADC in 32nm digital SOI CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2014, pp. 378-379, doi: 10.1109/ISSCC.2014.6757477.
    [6] W. -T. Park, A. Partridge, R.N. Candler, V. Ayanoor-Vitikkate, G. Yama, M. Lutz, and T.W. Kenny, "Encapsulated submillimeter piezoresistive accelerometers," Journal of Microelectromechanical Systems, vol. 15, no. 3, pp. 507-514, June 2006, doi: 10.1109/JMEMS.2006.876648.
    [7] X. Li, L. Gu, Y. Wang and H. Yang, "Single-Wafer-Processed Self-Testable High-g Accelerometers With Both Sensing and Actuating Elements Integrated on Trench-Sidewall," IEEE Sensors Journal, vol. 8, no. 12, pp. 1992-1999, Dec. 2008, doi: 10.1109/JSEN.2008.2006707.
    [8] K. Shibata, A. Uchiyama, A. Onishi, K. Machida, P. Chakraborty, S.-I. Iida, T. Konishi, M. Sone, Y. Miyake and H. Ito, "Simplified Analytical Damping Constant Model for Design of MEMS Capacitive Accelerometer With Gold Perforated Proof-Mass Structure," IEEE Sensors Journal, vol. 22, no. 15, pp. 14769-14778, Aug. 2022, doi: 10.1109/JSEN.2022.3184340.
    [9] M. Fujiyoshi, A. Kawamoto, S. Hashimoto, Y. Omura, H. Funabashi, Y. Ohira, Y. Hata, T. Ozaki, T. Akashi, Y. Nonomura, T. Nakayama and H. Yamada, "Stress Isolation Suspension for Silicon-on-Insulator 3-Axis Accelerometer Designed by Topology Optimization Method," IEEE Sensors Journal, vol. 22, no. 5, pp. 3965-3973, March 2022, doi: 10.1109/JSEN.2022.3141805.
    [10] S. Shi, W. Geng, K. Bi, Y. Shi, F. Li, J. He and X. Chou, "High Sensitivity MEMS Accelerometer Using PZT-Based Four L-Shaped Beam Structure," IEEE Sensors Journal, vol. 22, no. 8, pp. 7627-7636, April 2022, doi: 10.1109/JSEN.2022.3155407.
    [11] Q. Zou, W. Tan, E. S. Kim and G. E. Loeb, "Single- and Triaxis Piezoelectric-Bimorph Accelerometers," Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, Feb. 2008, doi: 10.1109/JMEMS.2007.909100.
    [12] C. -Y. Li, Y. -H. Chen, Z. -Y. Wei, Y. -C Ho, S. -Y Chu, C. -C. Tsai and C. -S. Hong, "Design of a Square MEMS Piezoelectric Accelerometer With a Wide Range of Applicability, a Low Transverse Sensitivity Ratio, and High Accuracy," IEEE Sensors Journal, vol. 22, no. 10, pp. 9306-9312, May 2022, doi: 10.1109/JSEN.2022.3161671.
    [13] Analog Devices Inc., "Low Noise, Wide Bandwidth, MEMS Accelerometer", ADXL1005 datasheet (Rev. 0), April 2018.
    [14] Y. Jeong, D. E. Serrano, V. Keesara, W. K. Sung and F. Ayazi, "Wafer-level vacuum-packaged triaxial accelerometer with nano airgaps," IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2013, pp. 33-36, doi: 10.1109/MEMSYS.2013.6474169.
    [15] H. Jiang, K. A. A. Makinwa and S. Nihitanov, "An energy-efficient readout method for piezoresistive differential pressure sensors," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 4287-4291, doi: 10.1109/IECON.2017.8216736.
    [16] Y. Zhao, J. Zhao, X. Wang, G. M. Xia, A. P. Qiu, Y. Su and Y. P. Xu, "A Sub-µg Bias-Instability MEMS Oscillating Accelerometer With an Ultra-Low-Noise Read-Out Circuit in CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2113-2126, Sept. 2015, doi: 10.1109/JSSC.2015.2431076.
    [17] M. L. Kuntzman, N. N. Hewa-Kasakarage, A. Rocha, D. Kim and N. A. Hall, "Micromachined In-Plane Pressure-Gradient Piezoelectric Microphones," IEEE Sensors Journal, vol. 15, no. 3, pp. 1347-1357, March 2015, doi: 10.1109/JSEN.2014.2361118.
    [18] Analog Devices Inc., The Data Conversion Handbook. W. Keater, ed. Burlington, MA: Newnes, 2005.
    [19] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010, doi: 10.1109/JSSC.2010.2042254.
    [20] C. -C. Liu, S. -J. Chang, G. -Y. Huang, Y. -Z. Lin and C. -M. Huang, "A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18µm CMOS," IEEE Symposium on VLSI Circuits, 2010, pp. 241-242, doi: 10.1109/VLSIC.2010.5560283.
    [21] F. Kuttner, "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13µm CMOS," IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2002, pp. 176-177 vol.1, doi: 10.1109/ISSCC.2002.992993.
    [22] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San and N. Takai, "SAR ADC algorithm with redundancy," IEEE Asia Pacific Conference on Circuits and Systems, 2008, pp. 268-271, doi: 10.1109/APCCAS.2008.4746011.
    [23] C.-C. Liu, S. -J. Chang, G. -Y. Huang, Y. -Z. Lin, C. -M. Huang, C. -H. Huang, L. Bu, C. -C. Tsai, "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2010, pp. 386-387, doi: 10.1109/ISSCC.2010.5433970.
    [24] P. Harpe, E. Cantatore and A. van Roermund, "A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step," IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3011-3018, Dec. 2013, doi: 10.1109/JSSC.2013.2278471.
    [25] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, "A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012, doi: 10.1109/JSSC.2012.2217635.
    [26] J. -H. Tsai, Y. -J. Chen, M. -H. Shen and P. -C. Huang, "A 1-V, 8b, 40MS/s, 113µW charge-recycling SAR ADC with a 14µW asynchronous controller," Symposium on VLSI Circuits - Digest of Technical Papers, 2011, pp. 264-265.
    [27] C.-H. Kuo, "A 10-bit 120-MS/s SAR ADC with compact architecture and noise suppression technique," M.S. thesis, Department Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, 2014. Retrieved from https://hdl.handle.net/11296/2hm534
    [28] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd and T. H. Lee, "Bandwidth extension in CMOS with optimized on-chip inductors," IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 346-355, March 2000, doi: 10.1109/4.826816.
    [29] W. Yan and H. Zimmermann, "Continuous-Time Common-Mode Feedback Circuit for Applications with Large Output Swing and High Output Impedance," IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, 2008, pp. 1-5, doi: 10.1109/DDECS.2008.4538757.
    [30] G. S. Moschytz, "Two-step precision tuning of twin-T notch filter," Proceedings of the IEEE, vol. 54, no. 5, pp. 811-812, May 1966, doi: 10.1109/PROC.1966.4874.
    [31] A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter," IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 599-606, May 1999, doi: 10.1109/4.760369.
    [32] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, "10-bit 30-MS/s SAR ADC Using a Switchback Switching Method," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013, doi: 10.1109/TVLSI.2012.2190117.
    [33] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time," IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2007, pp. 314-605, doi: 10.1109/ISSCC.2007.373420.
    [34] Z. Cao, S. Yan and Y. Li, "A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 μm CMOS," IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 862-873, March 2009, doi: 10.1109/JSSC.2008.2012329.
    [35] D. A. Johns, and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997.
    [36] C. -P. Huang, H. -W. Ting and S. -J. Chang, "Analysis of Nonideal Behaviors Based on INL/DNL Plots for SAR ADCs," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1804-1817, Aug. 2016, doi: 10.1109/TIM.2016.2562198.
    [37] Y. -S. Liu, C. -J. Huang, F. -Y. Kuo, K. -A. Wen and L. -S. Fan, "A monolithic CMOS/MEMS accelerometer with zero-g calibration readout circuit," IEEE Eurocon, 2013, pp. 2106-2110, doi: 10.1109/EUROCON.2013.6625271.
    [38] L. Zhong, J. Yang, D. Xu and X. Lai, "Bandwidth-Enhanced Oversampling Successive Approximation Readout Technique for Low-Noise Power-Efficient MEMS Capacitive Accelerometer," IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2529-2538, Sept. 2020, doi: 10.1109/JSSC.2020.3005811.
    [39] L. Zhong, S. Liu and D. Xu, "Correlated Double Amplifying Readout Technique for Low-Noise Power-Efficient MEMS Capacitive Accelerometer," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-11, 2022, Art no. 2004711, doi: 10.1109/TIM.2022.3193202.
    [40] R. -T. Weng, "Readout Circuit and Chip Design for a Piezoelectric MEMS Accelerometer," M.S. thesis, Department of Electrical Engineering, National Cheng Kung Univ., Tainan, Taiwan, 2020. Retrieved from https://hdl.handle.net/11296/h52ukj

    下載圖示 校內:2024-03-15公開
    校外:2024-03-15公開
    QR CODE