簡易檢索 / 詳目顯示

研究生: 林焜詳
Lin, Kun-Hsiang
論文名稱: 支撐向量機與隨機森林應用於颱風時雨量預報之比較
Comparison of SVM and RF for Hourly Typhoon Rainfall Forecasting
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 105
中文關鍵詞: 颱風時雨量預報變量優選支撐向量機隨機森林
外文關鍵詞: hourly typhoon rainfall forecasting, predictor selection, support vector machineshourly typhoon rainfall forecasting, support vector machines, random forests
相關次數: 點閱:177下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在應用兩種機器學習法-支撐向量機與隨機森林建置資料驅動模式,以發展一可靠之颱風時雨量預報,並引入非支配排序遺傳演算法結合兩學習法,分別建立變量優選模式以決定最適變量組,最後比較兩學習法於颱風時雨量預報之表現。首先,本研究蒐集雨量因子、颱風特性因子以及氣象因子,以變量優選模式優選四種因子組合:(1)因子組合一:雨量因子(2)因子組合二:雨量因子與颱風特性因子(3)因子組合三:雨量因子與氣象因子(4)因子組合四:雨量因子、颱風特性因子及氣象因子,探討各組合之最佳變量組對於颱風時雨量預報之表現。兩學習法於四種因子組合之測試結果顯示:因子組合四考量之輸入變量種類最為全面,以其優選變量建置之颱風時雨量預報模式有最好之表現。此外,本研究選用氣象站資料與自記式雨量站資料,分別採兩機器學習法搭配因子組合四之最佳變量組建置颱風時雨量預報模式,於輪流驗證中兩評鑑指標結果顯示:以平均絕對誤差來看,支撐向量機於時雨量預報之表現略優於隨機森林,若以平均效率係數來看,隨機森林於時雨量預報之表現則優於支撐向量機。於測試場次之時雨量預報結果顯示:支撐向量機與隨機森林於短前置時間之雨量預報表現相當,但於長前置時間之雨量預報則以隨機森林表現較佳。最後,本研究針對集水區上游自記式雨量站建立之颱風時雨量預報模式結果顯示:運用自記式雨量站附近之氣象資訊可有效改善颱風時雨量預報準確性,預報模式能提供可靠預報雨量資訊,以利防災單位進行洪水預警或防洪操作。

    This study aims to develop and compare the rainfall forecasting models based on two machine learning (ML) methods, support vector machines (SVMs) and random forests (RFs). Furthermore, an optimization algorithm named non-dominated sorting genetic algorithm (NSGA-II) is applied to construct a optimizing program for searching the optimal predictor set to improve the performance of forecasting. Firstly, four predictor sets: (1) antecedent rainfalls, (2) antecedent rainfalls and typhoon characteristics, (3) antecedent rainfalls and meteorological factors, and (4) antecedent rainfalls, typhoon characteristics and meteorological factors, respectively, were optimized by using NSGA-II to construct 1- to 6-hour ahead rainfall forecasting and the model performances were also investigated. The results reveal that the ML-based models with predictor set #4 as inputs show a significant improvement when compared to predictor set #1 especially for the long lead time forecasting. Finally, the performances of the SVM-based and RF-based model using the optimal predictors from set #4 were further compared. It is found that the RF-based model is superior to the SVM-based model in hourly typhoon rainfall forecasting.

    摘要II Extended AbstractIV 誌謝X 目錄XII 表目錄XV 圖目錄XVI 第一章 緒論1 1-1 研究動機與目的1 1-2 文獻回顧2 1-2-1颱風時雨量預報2 1-2-2多目標遺傳演算法4 1-2-3支撐向量機5 1-2-4隨機森林6 1-3 論文組織架構8 第二章 研究區域與資料概述10 2-1 研究區域介紹10 2-2 水文資料概述11 2-3 颱風事件12 2-4 輸入因子蒐集13 第三章 研究方法15 3-1 支撐向量機15 3-1-1非線性支撐向量回歸15 3-2 隨機森林19 3-2-1隨機性19 3-2-2森林20 3-3 參數設定21 3-3-1支撐向量機21 3-3-2隨機森林21 3-4 遺傳演算法22 3-4-1傳統遺傳演算法22 3-4-2多目標遺傳演算法24 3-4-3參數擬定28 3-5交叉驗證29 第四章 雨量預報之變量優選模式30 4-1 變量優選模式30 4-1-1變量之編碼32 4-1-2目標函數之擬定34 4-1-3終止條件35 4-1-4最佳解之選取36 4-2 因子組合之探討37 4-2-1各因子組合之優選變量結果37 4-2-2指標表現之評估48 4-3 本章總結55 第五章 雨量預報結果與討論56 5-1 氣象站之雨量預報結果58 5-1-1變量優選結果與模式表現之比較58 5-1-2預報測試場次之結果63 5-1-3預報測試場次之問題與討論72 5-2 自記式雨量站之雨量預報結果76 5-2-1變量優選結果與模式表現之比較76 5-2-2預報測試場次之結果81 5-2-3預報測試場次之問題與討論90 5-3 本章總結93 第六章 結論與建議94 6-1 結論94 6-2 建議95 參考文獻97

    王盼(2014)。基於隨機森林模型的需水預測模型及其應用。水資源保護,第30卷,第1期,第34-37頁。
    李明軒(2008)。支撐向量機與模糊理論於流量預報即時誤差修正之研究。國立成功大學水利及海洋工程學系碩士論文。
    李孟杰(2012)。探討阿茲海默症的基因生物標誌及微型核糖核酸生物標誌。慈濟大學醫學資訊學系碩士論文。
    李欣海(2013)。隨機森林模型在分類與迴歸分析中的應用。應用昆蟲學報,第50卷,第4期,第1190-1197頁。
    李旭青(2014)。基於隨機森林演算法的水稻冠層氮素含量光譜反演模型及區域應用。遙測學報,第18卷。
    林郁珊(2012)。應用空載全波形光達資料於波形分析與地物分類。國立交通大學土木工程學系碩士論文。
    卓達瑋(2010)。隨機森林分類方法於基因組顯著性檢定上之應用。國立政治大學統計學系碩士論文。
    陳憲宗(2006)。支撐向量機及模糊推理模式應用於洪水水位之即時機率預報。國立成功大學水利及海洋工程學系博士論文。
    郭家妏(2014)。隨機森林在河川水位即時預報之應用。國立成功大學水利及海洋工程學系碩士論文。
    黃彥儒(2009)。應用資料探勘於資訊揭露分類模式。中國文化大學會計學系碩士論文。
    趙李英記(2013)。隨機森林運用於白血病基因分類。第九屆知識社群國際研討會。
    葉清江、羅良岡、齊德彰、黃彥儒(2009)。整合分類迴歸樹與隨機森林於資訊揭露預測之研究:公司治理之考量。第六屆台灣作業研究學會理論與實務學術研討會。
    劉鑌鋈(2009)。利用機器學習修正QPESUMS雷達估計降雨。國立成功大學水利及海洋工程學系碩士論文。
    盧佑樺(2013)。微分法於空載全波形光達之特徵萃取與地物分類」,國立中央大學土木工程學系碩士論文。
    Burlando, P., Rosso, R., Cadavid, L.G., & Salas, J.D. (1993). Forecasting of short-term rainfall using ARMA models. Journal of Hydrology, 144, 193–211.
    Breiman, L., & Cutler, A. (2001). Random Forests. Machine Learning, 45(1), 5-32.
    Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research, 7, 2399-2434
    Chattopadhyay, S. (2007). Feed forward artificial neural network model to predict the average summer monsoon rainfall in India. Acta Geophysica, 55(3), 369–382.
    Chehata., N., Guo, L., & Mallet, C. (2009). Airborne LiDAR Feature Selection for Urban Classification using Random Forests. IntArchPhRS, 38(3), 207-212.
    Chang, C.C., & Lin, C.J. (2011). LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, Article 27.
    Crimmins, S.M., Dobrowski, S.Z., & Mynsberge, A.R. (2013). Evaluating Ensemble Forecasts of Plant Species Distributions under Climate Change. Ecological Modelling, 266, 126-130.
    Chen, J., Li, M., & Wang, W. (2012). Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast. Mathematical Problems in Engineering, 1-12.
    Dumais, S.T. (1998). Using SVMs for Text Categorization. IEEE Intelligent Systems, Trends and Controversies, M. A. Hearst, ed., 13(4).
    Dibike, Y.B., Velickov, S., Solomatine, D., & Abbott, M.B. (2001). Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering, 15(3), 208-216.
    Fletcher, R. (1986). Practical Methods of Optimization: Unconstrained Optimization: J. Wiley.
    Fonseca, C.M., & Fleming, P.J. (1993). Genetic Algorithm for Multiobjective Optimization: Formulation, Discussion and Generalization. Dept Automatic Control and Systems Eng. University od Sheffield, Sheffield S1 4DU, U.K.
    Fan, H. (2013). Land-Cover Mapping in the Nujiang Grand Canyon: Integrating Spectral, Textural, and Topographic Data in a Random Forest Classifier. International Journal of Remote Sensing, 34(21), 7545-7567.
    Grefenstette, J.J. (1986). Optimization of control parameters for genetic algorithms. IEEE Trans. Syst., Man, Cybern., 6(1):122-128.
    Guyon, I., Weston, J.,Barnhill, S., & Vapnik, V.N. (2002). Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46, 389–422.
    Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable Selection Using Random Forests. Pattern Recognition Letters, 31(14), 2225-2236.
    Gagne II, D.J., McGovern, A., & Xue, M. (2011). Machine Learning Enhancement of Storm Scale Ensemble Precipitation Forecasts. Recent Technical Papers and Presentations, 39-46.
    Hsu, C. W., Chang, C. C., & Lin, C, J. (2003). A Practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin
    Hong, W.C., & Pai, P.F. (2007). Potential assessment of the support vector regression technique in rainfall forecasting, Water Resour. Manage., 21, 495–513, doi:10.1007/s11269-006-9026-2.
    Hung, N.Q., Babel, M.S., Weesakul, S., & Tripathi, N.K. (2009). An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrology and Earth System Sciences, 13, 1413–1425
    Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive Models for Forecasting Hourly Urban Water Demand. Journal of Hydrology, 387, 141-150.
    Hsiao, L.F., Yang, M.J., Lee, C.S., Kuo, H.C., Shih, D.S., Tsai, C.C., Wang, C.J., Chang, L.Y., Chen, D.Y.C., Feng, L., Hong, J.S., Fong, C.T., Chen, D.S., Yeh, T.C., Huang, C.Y., Guo, W.D., & Lin, G.F. (2013). Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. Journal of Hydrology, 506, 55–68.
    Joachims, T. (1998). Text Categorization with Support Vector Machines. Proceedings of the 10th European Conference on Machine Learning (ECML'98), Chemnitz, Germany, 137-142.
    Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, USA, 98-105.
    Liong, S. Y., & Sivapragasam, C. (2002). Flood Stage Forecasting with Support Vector Machines. Journal of the American Water Resources Association, 38(1), 173-186.
    Lin, J.Y., Cheng, C.T., & Chau, K.W. (2006). Using support vector machines for long-term discharge prediction. Hydrological Sciences–Journal–des Sciences Hydrologiques, 51(4).
    Lin, G.F., & Chen, G.R. (2008). A systematic approach to the input determination for neural network rainfall-runoff models. Hydrological Processes, 22(14), 2524–2530.
    Lin, G.F., Chen, G.R., Wu, M.C., & Chou, Y.C. (2009). Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research, 45, W08440.
    Lin, G.F., Jhong, B.C., & Chang, C.C. (2013). Development of an effective data-driven model for hourly typhoon rainfall forecasting. Journal of Hydrology, 495, 52–63.
    Lin, G.F., & Jhong, B.C. (2015). A real-time forecasting model for the spatial distribution of typhoon rainfall. Journal of Hydrology, 521, 302–313.
    Min, J.H. & Lee, Y.C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28, 603–614
    Murty, Y., Bhallamudi, S., & Srinivasan, K. (2006). Non-uniform flow effect on optimal waste load allocation in rivers. Water Resources Management, 20(4), 509–530.
    Niksokhan, M.H., Kerachian, R., & Amin, P. (2009). A stochastic conflict resolution model for trading pollutant discharge permits in river systems. Environmental Monitoring and Assessment, 154, 219–232.
    Obeysekera, J.T.B., Tabios, G.Q., & Salas, J.D. (1987). On parameter estimation of temporal rainfall models. Water Resources Research, 23(10), 1837–1850.
    Osuna, E., Freund, R., & Girosi, F. (1997). An Improved Training Algorithm for Support Vector Machines. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, New York, 276-285.
    Osuna, E. (1998). Using SVMs for Face Detection. IEEE Intelligent Systems, Trends and Controversies, M. A. Hearst, ed., 13(4).
    Pang, H., Lin, A., Holford, M., Enerson, B.E., Li, B., Lawton, M.P., Floyed, E., & Zhao, H. (2006). Pathway Analysis Using Random Forests Classification and Regression. Bioinformatics, 22(16), 2028-2036.
    Prasad, A.M., Iverson, L.R., & Liaw, A. (2006). Newer Classification and Regression Tree Techniques-Bagging and Random Forests for Ecological Prediction. Ecosystems, 9(2), 181-199.
    Park, C.H., Joo, J.G., & Kim, J.H. (2012). Integrated washland optimization model for flood mitigation using multi-objective genetic algorithm. Journal of Hydro-environment Research, 6, 119-126
    Ramirez, M.C.V., Velho, H.F.D., & Ferreira, N.J. (2005). Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology, 301(1–4), 146–162.
    Reed, M.J., & Kumar, D.N. (2006) Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm. Water Resources Management, 20, 861-878.
    Reddy, M.J, & Kumar, D.N. (2007). Multi-objective differential evolution with application to reservoir system optimization. Journal of Computing in Civil Engineering, 21(2), 136–146.
    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., & Powers, J.G. (2008). A Description of the Advanced Research WRF, Version 3. NCAR Technical Note NCAR/TN-475+STR.
    Shiau, J.T. (2009). Optimization of reservoir hedging rules using multiobjective genetic algorithm. Journal of Water Resources Planning and Management, 135, 355–363.
    Sharma, M.A., & Singh, J.B. (2011). Comparative study of rainfall forecasting models. New York Science Journal, 4(7),115–120.
    Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag: New York.
    Venkatesan, C., Raskar, S.D., Tambe, S.S., Kulkarni, B.D., & Keshavamurty, R.N. (1997). Prediction of all India summer monsoon rainfall using error-back-propagation neural networks. Meteorology and Atmospheric Physics, 62(3–4), 225–240.
    Vapnik, V.N. (1998). Statistical Learning Theory. John Wiley & Sons: New York.
    Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G. A., & Torricelli, P. (2011). Vincenzi-Application of a Random Forest Algorithm to Predict Spatial Distribution of the Potential Yield of Ruditapes Philippinarum in the Venice Lagoon-Italy. Ecological Modelling, 222, 1471-1478.
    Wu, C.H., Ho, J.M., & Lee, D.T. (2004). Travel-Time Prediction With Support Vector Regression. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 5, NO. 4.
    Wu, C.L., Chau, K.W., & Li, Y.S. (2009). Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resources Research, 45, W08432, doi:10.1029/2007WR006737.
    Yeh, C.H., & Labadie, J.W. (1997). Multiobjective watershed-level planning of storm water detention systems. Journal of Water Resource Planning and Management, 123(6), 336-343.
    Yu, X., Liong, S.Y., & Babovic, V. (2002). Hydrologic Forecasting with Support Vector Machine Combined with Chaos-Inspired Approach. Hydroinformatics 2002: Proceedings of the 5th International Conference on Hydroinformatics,(Cardiff, U.K., 1-5 July 2002), IWA Publishing, London, U.K., 764-769.
    Yu, P.S., Chen, S.T., & Chang, I.F. (2006). Support Vector Regression for Real-time Flood Stage Forecasting. Journal of Hydrology, 328(3-4), 704-716.
    Yazdi, J., & Salehi Neyshabouri, S.A.A. (2012). A simulation-based optimization model for flood management on a watershed scale. Water Resources Management, 26, 4569–4586.
    Zitzler, T., & Thiele, L. (1999). Multiobjective evolutionary algorithm: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257-271.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE