| 研究生: |
林志昕 Lin, Jhih-Hsin |
|---|---|
| 論文名稱: |
整合採用線性永磁發電機與採用感應發電機之波浪場之研究與分析 Study and Analysis of Integrated Wave Farms Using Linear Permanent-magnet Generators and Induction Generators |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 波浪能轉換系統 、阿基米德波浪搖擺 、線性永磁式發電機 、穩定度 |
| 外文關鍵詞: | Wave energy conversion system (WECS), Archimedes wave swing (AWS), linear permanent-magnet generator (LPMG), stability |
| 相關次數: | 點閱:88 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對五種波浪發電架構進行研究及分析,分別為一、單部線性永磁發電機直接連接獨立負載;二、單部線性永磁發電機透過電力電子設備連接電網;三、兩部線性永磁發電機透過三相電壓源轉換器併聯經過單部三相電壓源換流器連接電網;四、兩部線性永磁發電機分別透過三相背對背轉換器後併聯連接至電網;五、兩部線性永磁發電機波浪場與採用威爾斯渦輪機之波浪場併聯連接至電網。本論文所使用之各發電系統之交直軸等效數學模型是假設系統於三相平衡之條件下所推導,並利用所推導之數學模型,分別完成五種波浪發電架構在不同波浪狀況下之穩態結果,以及系統在受到不同干擾下之動態模擬結果。
This thesis analyzed five wave energy conversion systems (WECSs): (1) single linear permanent-magnet generator (LPMG) connected to independent load, (2) single LPMG connected to grid with back-to-back converters, (3) two LPMGs connected in parallel with voltage-source converters then connected to grid with one voltage-source inverter, (4) two LPMGs connected to grid in parallel with their own back-to-back converters, (5) two LPMG wave farms integrated with a Wells turbine-based wave farm then connected to grid. The q-d axis equivalent mathematical model is developed under three-phase balanced loading conditions to establish the complete model of the studied system. Steady-state characteristics of these studied schemes under various wave conditions are examined while dynamic simulations of these studied WECSs subject to different disturbances are also carried out.
[1] 國際能源總署海洋能源系統施行協定網站。http://www.iea- oceans.org, retrieved date: Mar. 18, 2012.
[2] 經濟部能源局,能源產業技術白皮書,民國一百零一年。
[3] Pelamis Wave Power, http://www.pelamiswave.com, retrieved date: Apr. 22, 2012.
[4] S. S. Rao and B. K. Murthy, “Control of induction generator in a Wells turbine based wave energy system,” in Proc. International Conference on Power Electronics and Drives Systems, Nov. 2005, vol. 2, pp. 1590-1594.
[5] The Queen’s University of Belfast, “Islay LIMPET wave power plant,” Rep. JOR3-CT98-0312, Apr. 30, 2002.
[6] LIMPET Wave Energy Plant Celebrates Ten Years of Operation, http://www.renewbl.com/2010/11/29/limpet-wave-energy-plant-celebrates-ten-years-of-operation.html, retrieved date: Apr. 30, 2012.
[7] Limpet Wave Power Station, http://www.sciencephoto.com/media/ 340552/enlarge, retrieved date: May 2, 2012.
[8] Harnessing the Awesome Power of the Sea to Stop Global Warming, http://www.esemag.com/archive/0500/power.html, retrieved date: May 3, 2012.
[9] SCI Tech Daily, http://scitechdaily.com/floating-power-buoy- creates-electricity-from-ocean-waves, retrieved date: May 3, 2012.
[10] Aquaret Wave Dragon, http://www.wisions.net/files/tr_downloads/ Aquaret_Wave_Dragon.pdf, retrieved date: Mar. 19, 2012.
[11] Wave Dragon, http://www.wavedragon.net/index.php, retrieved date: Mar. 20, 2012.
[12] AWS Ocean Energy, http://www.awsocean.com/home.aspx, retrieved date: May 6, 2012.
[13] Eco Medio Ambiente, http://ecomedioambiente.com/energias- renovables/energia-undimotriz, retrieved date: May 8, 2012.
[14] Wave Energy Centre, http://www.wavec.org/index.php/16/ monitoring, retrieved date: May 8, 2012.
[15] K. Thorburn, H. Bernhoff, and M. Leijon, “Wave energy transmission system concepts for linear generator arrays,” Ocean Engineering, vol. 31, pp. 1339-1349, May 7, 2004.
[16] M. G. D. S. Prado, F. Gardner, M. Damen, and H. Polinder, “Modelling and test results of the Archimedes Wave Swing,” Journal of Power and Energy, vol. 220, no. 8, pp. 855-868, 2006.
[17] B. Das and B. C. Pal, “Voltage control performance of AWS connected for grid operation,” IEEE Trans. Energy Conversion, vol. 21, no. 2, pp. 353-361, Jun. 2006.
[18] F. Wu, X. P. Ping, P. Ju, and M. J. H. Sterling, “Modeling and control of AWS-based wave energy conversion system integrated into power grid,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1196-1240, Aug. 2008.
[19] F. Wu, X. P. Ping, P. Ju, and M. J. H. Sterling, “Optimal control for AWS-based wave energy conversion system,” IEEE Trans. Power Systems, vol. 24, no. 4, pp. 1747-1755, Nov. 2009.
[20] C. Boström and M. Leijon, “Operation analysis of a wave energy converter under different load conditions,” IET Renewable Power Generation, vol. 5, no. 1, pp. 245-250, May 2011.
[21] A. Garces, E. Tedeschi, G. Verez, and M. Molinas, “Power collection array for improved wave farm output based on reduced matrix converters,” in Proc. IEEE 12th Workshop Control Modeling for Power Electron., Jun. 2010, pp. 1-6.
[22] T. Ahmed, K. Nishida, and M. Nakaoka, “Grid power integration technologies for offshore ocean wave energy,” in Proc. IEEE Energy Conversion Congress and Exposition, Sep. 2010, pp. 2378-2385.
[23] L. Wang and Z. J. Chen, “Stability analysis of a wave-energy conversion system containing a grid-connected induction generator driven by a Wells turbine,” IEEE Trans. Energy Conversion, vol. 25, no. 2, pp. 555-563, Jun. 2010.
[24] E. A. Amon, T. K. A. Brekken, and A. A. Schacher, “Maximum power point tracking for ocean wave energy conversion,” IEEE Trans. Industry Applications, vol. 48, no. 3, pp. 1079-1086, May 2012.
[25] K. Rhinefrank et al., “Comparison of direct-drive power takeoff systems for ocean wave energy applications,” IEEE J. Oceanic Engineering, vol. 37, no. 1, pp. 35-44, Jan. 2012.
[26] Wave Energy Generation, http://people.bath.ac.uk/mg375/ onshore.htm, retrieved date: May 19, 2012.
[27] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, 1977.
[28] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
[29] C. M. Ong, Dynamic Simulation of Electric Machinery, Taiwan: Pearson Education, 2005.
[30] 陳贊家,波浪發電系統之特性分析,國立成功大學電機工程學系碩士論文,民國九十七年七月。
[31] 康正泓,雙側管型線性永磁同步發電機於波浪能量轉換系統之設計與分析,國立成功大學電機工程學系碩士論文,民國九十九年七月。
[32] 李浩文,利用超導儲能系統以及整合型功率潮流控制器於整合離岸式風場與沿岸波浪場之功率潮流控制及穩定度分析,國立成功大學電機工程學系碩士論文,民國一百年七月。