簡易檢索 / 詳目顯示

研究生: 蔡衍穎
Tsai, Yan-Ying
論文名稱: 砷化鋁鎵蕭特基二極體與電晶體式氫氣感測器之研製
Fabrication of AlGaAs-Based Schottky Diode and Transistor Type Hydrogen Sensors
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 120
中文關鍵詞: 氫氣感測器二極體電晶體砷化鋁鎵
外文關鍵詞: Schottky diode, AlGaAs, hydrogen sensor, pHEMT
相關次數: 點閱:71下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   自從以蕭特基接觸為基礎的氫氣感測機制提出之後,一些相關的半導體式氫氣感測器已被廣泛地製作與研究。在本論文中,吾人研製了包括鉑金屬/砷化鋁鎵金-半蕭特基二極體、鈀金屬/氧化層/砷化鋁鎵金-氧-半和鈀金屬/砷化鋁鎵金-半擬晶性高電子移動率電晶體等三種不同結構的氫氣感測器,並且探討在不同溫度及外加偏壓下對不同氫氣濃度的感測能力與暫態響應;最後,本文分別對相關的氫氣吸附反應動力與熱力學機制進行研究討論。
      在本論文中,吾人首先製作了以砷化鋁鎵為主動層,以鉑金屬作為觸媒金屬的金屬-半導體蕭特基二極體式氫氣感測器。此一元件具有良好的二極體整流特性和高氫氣探測能力,並且能夠探測很低含量的氫氣濃度以及快速的響應時間。為了加強所轉換出的電子訊號,並且增加實用價值,吾人進一步研製了具有電氣訊號放大功能的擬晶性高電子移動率電晶體,作為氫氣感測器。由實驗結果得知,此元件確實大幅度的提升了對氫氣的偵測能力。最後,吾人針對氧化物層的影響作探討,發現不具氧化物層的元件,其蕭特基特性受到較強烈的費米能階釘住效應,因而減少了介面上所吸附的氫原子,造成氫氣感測能力的降低。

      Since the hydrogen mechanism with Schottky contact has been proposed, the concerning semiconductor-type hydrogen sensors are extensively fabricated and demonstrated. In this thesis, two different types of electronic devices as hydrogen sensors (including Schottky diode and pseudomorphic high electron mobility transistor (pHEMT)) are systematically studied. The Schottky contact is formed on the material of AlGaAs by evaporating catalytic metals Pt (for diode) or Pd (for transistor). The steady-state and transient response of the studied devices under different hydrogen concentrations, temperature and applied voltages are measured. In addition, the kinetic and thermodynamic properties of hydrogen adsorption are discussed.
      In chapter 2, the Pt-Al0.3Ga0.7As metal-semiconductor (MS) Schottky diode hydrogen sensor is studied. The studied device exhibits excellent diode rectifying behavior, high hydrogen detection sensitivity, low hydrogen concentration detected limitation, and short response and recovery time.
      In chapter 3, a novel a novel Pd-oxide-AlGaAs pseudomorphic high electron mobility transistor has been investigated. Due to the transistor amplification characteristic, hydrogen detection sensitivity and concentration detected limit are superior to those of the AlGaAs-based Schottky diode.
      The influence of oxide layer on hydrogen detection ability has been studied in chapter 4. It has been observed that the oxide can restrain the Fermi-level pinning effect effectively by preventing the reaction of Pd catalytic metal and AlGaAs material.

    Abstract Figure Captions Chapter 1 Introduction............................................. 1 Chapter 2 Study of a Hydrogen Sensing Pt/Al0.3Ga0.7As Metal-Semiconductor (MS) Schottky Diode 2.1. Introduction.................................................. 9 2.2. Device Structure and Fabrication… ...............................10 2.3. Experimental Results and Discussion… … … … … … .… … ......… … .11 2.3.1 Analysis of current-voltage characteristics… ..… … … … … … … … 11 2.3.2 Properties of reaction kinetics… … … … … … … … … .… … … … … … 13 2.3.3 Characteristics of transient-state response… … … … … … … … … … .15 2.4. Summary… … ...................................… ...........16 Chapter 3 Characteristics of a Hydrogen-Sensing Pd/Oxide/Al0.24Ga0.76As Metal-Oxide-Semiconductor (MOS) Pseudomorphic High Electro n Mobility Transistor (pHEMT) 3.1. Introduction.................................................18 3.2. Device Structure and Fabrication… … … … … … … ...................19 3.3. Experimental Results and Discussion… … … … … … ...........… … … .20 3.4. Summary… … ...................................… ...........27 Chapter 4 Study of Pd/Al0.24Ga0.76As Metal-Semiconductor (MS) Pseudomorphic High Electron Mobility Transistor (pHEMT) Hydrogen Sensor 4.1. Introduction.................................................29 4.2. Device Structure and Fabrication… … .............................30 4.3. Experimental Results and Discussion… … … … … … … … .......… … … .31 4.4. Summary… … ...................................… ...........37 Chapter 5 Conclusion and Prospect 5.1. Conclusions...............................................… .38 5.2. Prospects… … ................................................38 References Figures Publication List Acknowledgment and Biography

    Reference
    [1] T. A. Jones (1987). Proc. Symp. Chem. Sensors, Electrochem. Soc. 87, 12.
    [2] N. Yamazoe (1987). Proc. Symp. Chem. Sensors, Electrochem. Soc. 87, 1.
    [3] J. N. Zemel (1987). Proc. Symp. Chem. Sensors, Electrochem. Soc. 87, 23.
    [4] C. Christofides and A. Mandelis (1990). J. Appl. Phys. 68, R1.
    [5] N. Graber, H. Lüdi, and H. M. Widmer (1990). Sens. Actuators B1, 239.
    [6] A. Mandelis and C. Christofides (1993). Physics, Chemistry and Technology
    of Solid State Gas Sensor Devices.
    [7] S. R. Morrison (1982). Sens. Actuators, 2, 329.
    [8] W. J. Buttner, G. J. Maclay, and J. R. Stetter (1988). IEEE Trans.
    Electron Devices, 35 793.
    [9] C. Christofides and A. Mandelis (1990). J. Appl. Phys. 68, R1.
    [10] P. T. Moseley (1997). Meas. Sci. Technol., 8, 223.
    [11] K. Hjort (1997). Semiconductor Conference, 1997. CAS ’97 Proceedings,
    1997 International, 2, 431.
    [12] A. Baranzahi, E. Janzen, O. Kordina, I. Lundström, A. L. Spetz, and P.
    Tobias (1997). IEEE Trans. Electron Device Lett., 18, 287.
    [13] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly, and P, Ripka (2002).
    Sensors, 2002 Proceedings of IEEE, 18, 779.
    [14] R. C. Weast (1976). Handbook of Chemistry and Physics (Cleveland: CRC),
    D-107.
    [15] K. K. Ng (2002). Complete Guide to Semiconductor Device, New York.
    [16] S. J. Gentry and T. A. Jones (1986). Sens. Actuators, 10, 141.
    [17] D. Kohl (1990). Sens. Actuators, B1, 158.
    [18] B. Keramati and J. N. Zemel (1978). Phys. SiO2 Its Interfaces, Proc. Int.
    Top. Conf., Yorktown Heights, NY, 459.
    [19] P. Ruths, S. Ashok, S. Fonash, and J. Ruths (1981). IEEE Trans. Electron
    Devices, 28 1003.
    [20] I. Lundström and L. G. Petersson (1996). J. Vac. Sci. Technol. A, 14,
    1539.
    [21] W. P. Kang and Y. Grbz (1994). J. Appl. Phys. 75, 8175.
    [22] R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A.
    Plut (1987). J. Appl. Phys. 62, 1074.
    [23] Y. Morita, K. I. Nakamura, and C. Kim (1996). Sens. Actuators B, 33, 96.
    [24] M. A. Vannice, J. E. Benson, and M. Boudart (1970). J. Catal. 16, 348.
    [25] A. Abe and T. Hosoya (1984). Proc. World Hydrogen Energy Conf., 5th,
    Toronto, 4, 1893.
    [26] I. Lundström, M. Armgarth, and L. G.. Petersson (1989). CRC Crit. Rev.
    Solid State Mater. Sci. 15,201.
    [27] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones (1991). J.
    Electrochem. Soc. 138, 159.
    [28] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M.
    Glavmo, and A. Baranzahi (1997). Sens. Actuators B, 43, 52.
    [29] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang,
    J. Y. Chen, C. Z. Wu, and W. C. Liu (2001). Semicond. Sci. Technol., 16,
    997.
    [30] I. Lundström, M. S. Shivaraman, C. Svensson, and I. Lundkvist (1975).
    Appl. Phys. Lett., 26, 55.
    [31] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang (2001). Jpn.
    J. Appl. Phys. 40, 6254.
    [32] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones (1991). J. Appl.
    Phys. 70, 3348.
    [33] H. I. Chen, C. K. Hsiung, and Y. I Chou (2003). Semicond. Sci. Technol.,
    18, 620.
    [34] H. I. Chen, Y. I Chou, and C. Y. Chu (2002). Sens. Actuators B, 85, 10.
    [35] V. Battut, J. P. Blanc, and C. Maleysson (1997). Sens. Actuators B, 44,
    503.
    [36] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and
    H. I. Chen (2002). IEE Electron. Lett. 38, 92.
    [37] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil (1999).
    Thin Solid Films, 348, 266.
    [38] N. Yamamoto, S. Tonomura, F. Matsuoka, and H. Tsubomura (1981). J. Appl.
    Phys. 52, 6227.
    [39] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Chang, S. Y. Cheng,
    and C. T. Lu (2002). IEEE Trans. Electron Device Lett., 23, 640.
    [40] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu (2003).
    Semicond. Sci. Technol., 18, 615.
    [41] L. Y. Chen, G. W. Hunter, P. G. Neudeck, and D. Knight (1998).
    Solid-State Electron., 42, 2209.
    [42] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, and M. Eickhoff
    (2001). Sens. Actuators B, 78, 216.
    [43] C. K. Kim, J. H. Lee, N. I. Cho, and D. J. Kim (2000). Sens. Actuators B,
    66, 116.
    [44] W. Shin, M. Matsumiya, F. Qiu, N. Izu, and N. Murayama (2004). Sens.
    Actuators B, 97, 344.
    [45] M. Matsumiya, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, and S.
    Kanzaki (2004). J. Electrochem. Soc. 151, H7.
    [46] B. P. Luther, S. D. Wolter, and S. E. Mohney (1999). Sens. Actuators B,
    56, 64.
    [47] D. S. Lee, J. H. Lee, Y. H. Lee, and D. D. Lee (2003). Sens. Actuators B,
    89, 305.
    [48] J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann
    (2002). Sens. Actuators B, 87, 425.
    [49] B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton
    (2004). Appl. Phys. Lett., 84, 1123.
    [50] S. Y. CHoi, K. Takahashi, and T. Matsuo (1984). IEEE Trans. Electron
    Device Lett., 5, 14.
    [51] Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee (1990). Appl. Phys.
    Lett., 57, 2686.
    [52] Y. Gurbuz, W. P. Wang, J. L. Davidson, and D. V. Kerns (1996). Sens.
    Actuators B, 33, 100.
    [53] I. Lundström (1981). Sens. Actuators, 1, 403.
    [54] L. G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström (1986).
    Appl. Surface Science, 27, 275.
    [55] B. Hellsing, B. Kasemo, and V. P. Zhdanov (1991). J. Catalysis 132, 210.
    [56] M. Jonansson, I. Lundström, and L. G. Ekedakl (1998). J. Appl. Phys. 84,
    44.
    [57] C. Tsamis, L. Tsoura, A. G. Nassiopoilou, A. Travlos, C. E. Salmas. K. S.
    Hatzilyberis, and G. P. Androutsopoulos (2002). IEEE Sensors, 2, 89.
    [58] M. Löfdahl, m. Eriksson, M Johansson, and I. Lundström (2002). J. Appl.
    Phys. 91, 4275.
    [59] R. J. Silbey and R. A. Alberty (2001). Physical chemistry-3rd ed., John
    Willey & Sons, Inc., New York.
    [60] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C.
    Cheng, and K. B. Thei (2001). IEEE Trans. Electron Devices, 48, 2677.
    [61] C. Z. Wu, L. W. Laih, and W. C. Liu (1996). Solid-State Electron., 39,
    791.
    [62] W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen,
    and W. C. Wang (1999). Appl. Phys. Lett., 74, 2155.
    [63] L. W. Laith, W. S. Lour, J. H. Tsai, W. C. Liu, C. Z. Wu, K. B. Thei, and
    R. C. Liu (1995). Solid-State Electron., 39, 15.
    [64] W. S. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu (1994). IEEE Trans.
    Electron Devices, 41 456.
    [65] D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez (1991).
    IEEE Trans. Electron Device Lett., 12, 436.
    [66] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M.
    Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney (1989). IEEE
    Trans. Electron Device Lett., 10, 565.
    [67] M. Josowicz, and J. Janata, in: T. Seiyama (Ed.) Chemical Sensor
    Technology, Elsevier, Amsterdam, 1988.
    [68] A. Fuchs, M. Bögner, T. Doll, and I. Eisele (1998). Sens. Actuators, 48,
    296.
    [69] Z. Gergintschew, P. Kornetzky, and D. Schipanski (1996). Sens. Actuators
    B, 36, 285.
    [70] R. R. Rye and A. J. Ricco (1987). J. Appl. Phys. 62, 1084.
    [71] J. Fogelberg, M. Eriksson, H. Dannetum, and L. G. Petersson (1995). J.
    Appl. Phys., 78, 988.
    [72] I. Lundström and L. G. Petersson (1996). J. Vac. Sci. Technol. A, 14,
    1539.
    [73] K. W. Lin, H. I Chen, C. C. Cheng, H. M. Chuang, C. T Lu, and W. C. Liu
    (2003), Sens. Actuators B, 94, 145.
    [74] O. K. Tan, W. Zhu, M. S. Tse, and X. Yao (1999), Mater. Sci. Eng., B58,
    221.
    [75] H. I. Chen, Y. I Chou, and C. K. Hsiung (2003). Sens. Actuators B, 92, 6.
    [76] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu
    (2003), IEEE Trans. Electron Device Lett., 24, 390.
    [77] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang,
    C. Y. Chen, and W. C. Liu (2004), Semicond. Sci. Technol., 19, 778.
    [78] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I Chen, C. T. Lu, and W. C. Liu
    (2004), Sens. Actuators B, 99, 425.
    [79] G. J. Li, X. H. Zhang, and S. Kawi (1999), Sens. Actuators B, 60, 64.
    [80] M. Takashi, J. Kazukiyo, and K. Shigeru (1983). Fujitsu Sci. Tech. J.,
    19, 243.
    [81] J. A. Turner and B. L. H. Wilson (1963). Inst. Phys. Phys. Soc., 195.
    [82] L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundström (1985).
    J. Appl. Phys., 58, 404.
    [83] S. M. Sze (1981). Physics of Semiconductance Devices, 2nd Edn, Charp. 2.
    Wiley, New York.
    [84] B. P. Luther, S. D. Wolter, and S. E. Mohney (1999). Sens. Actuators B,
    56, 164.
    [85] L. Talazac, F. Barbarin, C. Varenne, and Y. Cuminal (2001). Sens.
    Actuators B, 77, 447.
    [86] L. Y. Chen, G. W. Hunter, P. G. Neudeck, and D. Knight (1998).
    Solid-State Electron., 42, 2209.
    [87] J. Masó, N. Barniol, F. Pérez-Murano, and X. Aymerich (1995). Thin Solid
    Films, 261, 299.
    [88] S. Y. Cheng (2003). Mater. Chem. Phys., 78, 525.
    [89] V. I. Filippov, A. A. Terentjev, and S. S. Yakimov (1997). Sens.
    Actuators B, 41, 157.
    [90] D. Dwivedi, R. Dwivedi, S. and K. Srivastava (2000). Sens. Actuators B,
    71, 161.
    [91] H. Kobayashi, H. Iwadate, and Y. Nakato (1995). Sens. Actuators B, 25,
    815.
    [92] R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon (1994). J. Appl.
    Phys., 76, 403.
    [93] J. F. Wager and C. W. Wilmsen (1980). J. Appl. Phys., 51, 812.
    [94] A. A. Iliadis (1989). IEE Electron. Lett., 25, 572.
    [95] Z. L. Weber, E. R. Weber, and J. Washburn (1990). Appl. Phys. Lett., 56,
    2507.
    [96] H. Hasegawa, T. Sato, and T. Hashizumi (1997). J. Vac. Sci. Technol. B,
    15, 1227.
    [97] S. Lodha, D. B. Janes, and N. P. Chen (2003). J. Appl. Phys., 93, 2772.
    [98] H. I. Chen and Y. I Chou (2003). Semicond. Sci. Technol., 19, 39.

    下載圖示 校內:立即公開
    校外:2004-06-18公開
    QR CODE