| 研究生: |
王俊傑 Wang, Jun-Jie |
|---|---|
| 論文名稱: |
低損微波介電材料之研究及應用 Investigation and Application of Low Loss Microwave Dielectric Materials |
| 指導教授: |
黃正亮
Huang, Cheng-Liang 魏炯權 Wei, Chung-Chuang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 微波 、介電 、材料 |
| 外文關鍵詞: | Materials, Microwave, Dielectric |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近幾年來,很多研究者都強調微波介電材料的重要性,這是由於通訊系統的微波介電共振器正快速地發展,例如:蜂巢式手機,無線區域網路,直播衛星,全球定位系統等等皆有使用到介電共振器。對於微波通訊元件之縮小化的需求,介電材料應該進一步的改善以及達到高品質化的目標。因此,低損耗的微波介電材料常被使用在微波通訊系統中,並使用在設計高品質因素的元件內。然而,將介電材料積體化也是實現微波元件縮小化的方法之一。就如之前所提的內容,本論文將以三個部分加以探討及研究:
一、 低損耗微波介電材料之研究
[a] 奈米級氧化鋁陶瓷之研究
(1) 在移動式通訊系統的應用裡,氧化鋁陶瓷是非常受到歡迎的介電材料,例如:蜂巢式手機,無線區域網路,直播衛星,全球定位系統等等皆有使用到介電材料。奈米級氧化鋁陶瓷是很值得去研究其微波介電特性,因為它具有 K = 10,Q×f = 521,000 GHz, tf = -48.9 ppm/℃的微波介電特性,並使用XRD及SEM來加以鑑定及分析。
(2) 為了得到較低的燒結溫度,使用奈米級(α+θ)-Al2O3作為起始粉末,這樣不但降低了燒結溫度而且提高其品質因素。至於晶粒成長侷限於θ-Al2O3的量,也因為如此而提高氧化鋁的密度。
(3) 為了達到溫度穩定的材料,奈米級二氧化鈦將添加到奈米級氧化鋁中,這是由於二氧化鈦具有正的溫度係數。當添加8wt%的二氧化鈦時,將可以得到一個較好的微波介電特性如下:K = 10.81,Q×f = 338,000 GHz,tf = 1.3 ppm/oC。
[b] (Mg0.95Zn0.05)TiO3陶瓷系統之微波介電特性
由於(Mg0.95Zn0.05)TiO3陶瓷系統具有 K = 17.05,Q×f = 264,000 GHz,tf = -40.31 ppm/℃的微波介電特性,雖然有好的Q×f值,但其溫度頻率係數仍為負值,因此有改善的空間。為了達到溫度頻率係數為零的目標,將SrTiO3、(Na0.5La0.5)TiO3和(Na0.5Nd0.5)TiO3分別與(Mg0.95Zn0.05)TiO3混和。這些兩相系統的微結構與微波介電特性將進一步的討論分析。
二、使用奈米級氧化鋁粉末為靶材之薄膜製作
薄膜技術已經成為今日積體電路的主要技術,至於低漏電流的介電薄膜就變得非常重要。在本研究中,薄膜的結構及表面特性將被沈積參數所影響,例如:沈積壓力、基板溫度、以及功率等製程參數。因此,薄膜的電特性及物理相關分析也會加以討論。
三、 微波微帶濾波器之設計與製作
以第一部份完成之低損介電材料為基板,設計一個微帶線帶通濾波器,其中包括設計的方式、製程所使用的條件等觀念及技術,完成了由材料到設計元件,皆由自行製作的濾波器。
Recently, many researchers emphasize the importance of microwave dielectric materials due to the rapid progress on the satellite and mobile communications such as cellular phones, wireless local area networks (WLAN), direct broadcasting satellite (DBS). For miniaturized requirements of microwave communication devices, dielectric materials must be further improved and achieve an objective of high quality. Therefore, low loss microwave dielectric materials can be utilized in designing high-quality devices in communication system. The integration of dielectric materials is also main method to carry out the miniaturization of microwave devices. As mentioned above, the main investigation of this article include three parts which are the study of low-loss microwave dielectric materials, the fabrication of alpha alumina (α-Al2O3) films using nano-scaled target powders deposited on n-type Si(100) substrates, and their applications on planar filters at the microwave frequency.
1. The study of low-loss microwave dielectric materials:
[a] Investigation of nano-scaled alumina ceramics:
(1) Alumina is a popular dielectric material in mobile communications. It is always applied in microwave systems such as in dielectric resonators, filters, and antennas. Nano-scaled alumina is worthy to investigate its microwave properties. In this thesis, the nano-scaled alumina samples show that a dielectric constant of 10, a high Q×f value of 521,000 (at 14 GHz) and the temperature coefficient of resonant frequency of -48.9 ppm/℃ can be obtained at sintering temperature of 1550℃ for 4 h. Sintered ceramic samples were characterized by X-ray and scanning electron microscopy (SEM).
(2) In order to get lower sintering temperature, using the nano-scaled (α+θ)-Al2O3 powders can effectively increase the value of the quality factor and lower the sintering temperature of the ceramic samples. Grain growth can be limited with θ-phase Al2O3 addition and high density alumina ceramics can be obtained with smaller grain size comparing to pure α-Al2O3.
(3) For achieving a temperature-stable material, nano-scaled TiO2, having a large positive value, was added to nano-scaled alumina. A dielectric constant of 10.81, a high Q×f value of 338,000 GHz (measured at 14 GHz) and a temperature coefficient of resonant frequency of 1.3 ppm/oC were obtained for nano-scaled alpha alumina with 8 wt% TiO2 sintered at 1350oC for 4 h.
[b] Microwave dielectric properties of (Mg0.95Zn0.05)TiO3 ceramic system:
(Mg0.95Zn0.05)TiO3 is a popular dielectric material and possesses high dielectric constant (K ~ 17.05), high quality factor (Q×f value ~ 264,000 GHz) and negative tf value (-40.31 ppm/oC). In order to achieve a temperature-stable material, SrTiO3, (Na0.5La0.5)TiO3, and (Na0.5Nd0.5)TiO3, were added to (Mg0.95Zn0.05)TiO3, respectively. The microstructures and the microwave dielectric properties of these two-phase systems were investigated. Two-phase system was confirmed by the XRD patterns. Evaporation of Zn occurred at temperatures higher than 1300℃ and caused an increase in the dielectric loss of these systems.
2. The fabrication of alpha alumina (α-Al2O3) films using nano-scaled target powders:
Because thin-film technology has become a major requirement for integrated circuit today, developing dielectric films with lower leakage current is very important for microwave communication system. In this study, the structural and morphological characteristics of the films affected by deposition conditions, such as deposited pressures, substrate temperatures and rf powers. The electrical and physical properties of the films were investigated.
3. Design and fabrication of planar filters at the microwave frequency:
A band-pass filter of SIR with a skew-symmetric feed structure is presented. In this article, using the high permittivity ceramic substrate to miniaturize the sizes of Butterworth band-pass filters is investigated. The selectivity and stop-band rejection of the designed filters can be improved significantly by utilizing a skew-symmetric (zero degree) feed structure. These factors result reduce the size of the filter. The responses of the Butterworth filters using Al2O3 with 8 wt% TiO2 additions (K = 10.81, tanδ = 0.00004) and 0.96(Mg0.95Zn0.05)TiO3-0.04SrTiO3 ( K = 20.96, tanδ = 0.00007) ceramic substrates are designed at a center frequency of 2.45 GHz. The compact size, low-loss, sharp response and performance of the filter are presented in this paper.
[1] S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, Am. Ceram. Soc. Bull., 66 (1987) 1405.
[2] K. Wakino, K. Minai, and H. Tamura, J. Am. Ceram. Soc., 67 (1984) 278.
[3] T. Kakada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 1909.
[4] T. Kakada, S. F. Wang, S. Yoshikawa, S. J. Yang, and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 2485.
[5] S. I. Hlrano, T. Hayashi, and A. Hattori, J. Am. Ceram. Soc., 74 (1991) 1320.
[6] V. Tolmer and G. Desqardin, J. Am. Ceram. Soc., 80 (1997) 1981.
[7] C. L. Huang and Y. B. Chen, Jpn. J. Appl. Phys., 44 (2005) 6706.
[8] K. Wakino, Ferroelectrics 91 (1989) 69.
[9] H. J. Lee, I. T. Kim, and K. S. Hong, Jpn. J. Appl. Phys., 36 (1997) 1318.
[10] C. L. Huang, R. J. Lin, and J. J. Wang, Jpn. J. Appl. Phys., 41 (2002) 758.
[11] H. J. Youn, K. Kim, Jpn. J. Appl. Phys., 35 (1996) 3947.
[12] S. Y. Cho, C. H. Kim, and D. W. Kim, J. Mater. Res., 14 (1999) 2484.
[13] M. H. Weng, T. J. Liang, and C. L. Huang, Journal of the European Ceramic Society, 22 (2002) 1693.
[14] C. L. Huang and M. H. Weng, Jpn. J. Appl. Phys., 38 (1999) 5949.
[15] H. M. Bryan and J. J. Thomson, J. Am. Ceram. Soc., 57 (1974) 522.
[16] A. Kan, H. Ogawa, T. Oishi, A. Yokoi, and H. Ohsato, Jpn. J. Appl. Phys., 44 (2005) 7103.
[17] P. V. Bijumon, P. Mohanan, and M. T. Sebastian, Jpn. J. Appl. Phys., 41 (2002) 3384.
[18] H. Zhang, L. Fang, R. Dronskowski, P. Mueller, and R. Z. Yuan, J. Solid-State Chem., 177 (2004) 4007.
[19] N. M. Alford and S. J. Penn, J. Appl. Phys., 80 (1996) 5895.
[20] C. L. Huang, J. J. Wang, and C. Y. Huang, Mater. Lett., 59 (2005) 3746.
[21] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, Jpn. J. Appl. Phys., 43 (2004) 749.
[22] Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, J. Euro. Ceram. Soc., 26 (2006) 2093.
[23] A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, and N. M. Alford, J. Am. Ceram. Soc., 83 (2000) 95.
[24] J. W. Choi, S. J. Yoon, H. J. Kim, and K. H. Yoon, Jpn. J. Appl. Phys., 41 (2002) 3804.
[25] W. C. Tzou, Y. C. Chen, S. L. Chang, and C. F. Yang, Jpn. J. Appl. Phys., 41 (2002) 7422.
[26] J. S. Reed: Principles of Ceramics processing, 2nd (Wiley, 1995), p. 219-222.
[27] R. C. Kell, A. C. Greenham, and G. C. E. Olds, J. Am. Ceram. Soc., 56 (1973) 352.
[28] V. M. Ferreira, F. Azough, J. L. Baptista, and R. Freer, Ferroelectrics, 133 (1992) 127.
[29] V. M. Ferreira, F. Azough, R. Freer, and J. L. Baptista, J. Mater. Res., 12 (1997) 3293.
[30] V. M. Ferreira, J. L. Baptista, S. Kamba, and J. Petzelt, J. Mater. Sci., 28 (1993) 5894.
[31] C. L. Huang and M. H. Weng, Mater. Res. Bull., 36 (2001) 2741.
[32] H. T. Kim, J. D. Byun, and Y. Kim, Mater. Res. Bull., 33 (1998) 975.
[33] M. L. Hsieh, L. S. Chen, S. M. Wang, C. H. Sun, M. H. Weng, and M. P. Houng, Jpn.
J. Appl. Phys., 44 (2005) 5045.
[34] H. T. Kim, S. Nahm, and J. D. Byun, J. Am. Ceram. Soc., 82 (1999) 3476.
[35] C. L. Huang and S. S. Liu, Jpn. J. Appl. Phys., 46 (2007) 283.
[36] X. Guo, X. Wang, Z. Luo, and T. Tamagawa, Proc. Int. Electron Device Meet. Dig.,
377. (1998) (IEEE, Piscataway, NJ, 1998).
[37] D. Park, Q. Lu, T. King, C. Hu, A. Kainitsky, S. Tay, and C. Cheng, Proc. Int. Electron
Device Meet. Dig., 381. (1998) (IEEE, Piscataway, NJ, 1998).
[38] M. Shahjahan, N. Takahashi, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys., 41, (2002) 1474.
[39] M. Ishida, I. Katakabe, and T. NaKamura, Appl. Phys. Lett., 52, (1988) 1326.
[40] Y. C. Jung, H. Miura, and M. Ishida, Jpn. J. Appl. Phys., 38, (1999) 2333.
[41] S. B. Cohn, IRE Trans Microwave Theory Tech., 6 (1958) 223.
[42] S. Caspi and J. Adelman, IEEE Trans Microwave Theory Tech., 36 (1988) 759.
[43] U. H. Gysel, IEEE Trans Microwave Theory Tech., 22 (1974) 523.
[44] E. G. Cristal and S. Frankel, IEEE Trans Microwave Theory Tech., 20 (1972) 719.
[45] J. S. Hong and M.J. Lancaster, IEEE Trans Microwave Theory Tech., 46 (1998) 118.
[46] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, IEEE Trans Microwave
Theory Tech., 45 (1997) 1226.
[47] M. Sagawa, K. Takahashi, and M. Makimoto, IEEE Trans Microwave Theory Tech.,
37 (1989) 1991.
[48] C. M. Tsai, S. Y. Lee, and H. M. Lee, IEEE Trans Microwave Theory Tech., 51 (2003) 1517.
[49] C. M. Tsai, S. Y. Lee, and C. C. Tsai, IEEE Trans Microwave Theory Tech., 50 (2002) 2362.
[50] B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory Tech., 16 (1985) 402.
[51] Y. Kobayashi and M. Katoh, IEEE Trans. Microwave Theory Tech., 33 (1985) 586.
[52] R. Messier and R. C. Ross, J. Vac. Sci. Technol. A, 2 (1984) 500.
[53] S. Agarwal, G. L. Sharma, and R. Manchanda, Solid State Communications, 119 (2001) 681.
[54] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, (1981).
[55] J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectric, Clarendon, Oxford, England, (1973).
[56] P. Li and T. M. Lu, Physical Review B, 43 (1991) 14261.
[57] T. Mihara and H. Watanbe, Jpn. J. Appl. Phys., 34 (1995) 5664.
[58] A. Grove, B. E. Deal, E. H. Show, and C. T. Sah, Solid-State Electronics, 18 (1965) 145.
[59] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw-Hill Inc., (1994).
[60] G. Matthaei, L. Young, and E. M. T Jones, “Microwave Filters, Impedance-Matching Networks and Coupling structures,” McGraw-Hill, New York, (1964).
[61] B. D. Silvermann, Phys. Rev., 125 (1962) 1921.
[62] K. Haga, T. Ishii, J. I. Mashiyama, and T. Ikeda, Jpn. J. Appl. Phys., 31 (1992) 3156.
[63] R. D. Shannon, Acta Cryst., A 32 (1976) 751.
[64] P. H. Sun, T. Nakamura, Y. J. Shan, Y. Inaguma, M. Itoh, and T. Kitamura, Jpn. J. Appl. Phys., 37 (1998) 5625.
[65] H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, and S. Nakano,
Jpn. J. Appl. Phys., 30 (1991) 2339.
[66] M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys., 82 (1997) 3482.
[67] P. Bhattacharya, T. Komeda, K. Park, and Y. Nishioika, Jpn. J. Appl. Phys., 32 (1993) 4103.
[68] M. Makimoto, and S. Yamashita, IEEE Trans. Microwave Theory Tech., 45 (1980) 1078.
[69] T. Edwards, Foundations for Microstrip Circuit Design, 2nd ed. New York: Wiley, 1992, ch. 5.
[70] A. B. Williams and F.J. Taylor, Electronic Filter Design Handbook, 3rd ed. New York: McGraw-Hill, 1995, ch. 5.
校內:2037-06-17公開