簡易檢索 / 詳目顯示

研究生: 王俊傑
Wang, Jun-Jie
論文名稱: 低損微波介電材料之研究及應用
Investigation and Application of Low Loss Microwave Dielectric Materials
指導教授: 黃正亮
Huang, Cheng-Liang
魏炯權
Wei, Chung-Chuang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 133
中文關鍵詞: 微波介電材料
外文關鍵詞: Materials, Microwave, Dielectric
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近幾年來,很多研究者都強調微波介電材料的重要性,這是由於通訊系統的微波介電共振器正快速地發展,例如:蜂巢式手機,無線區域網路,直播衛星,全球定位系統等等皆有使用到介電共振器。對於微波通訊元件之縮小化的需求,介電材料應該進一步的改善以及達到高品質化的目標。因此,低損耗的微波介電材料常被使用在微波通訊系統中,並使用在設計高品質因素的元件內。然而,將介電材料積體化也是實現微波元件縮小化的方法之一。就如之前所提的內容,本論文將以三個部分加以探討及研究:

    一、 低損耗微波介電材料之研究
    [a] 奈米級氧化鋁陶瓷之研究
    (1) 在移動式通訊系統的應用裡,氧化鋁陶瓷是非常受到歡迎的介電材料,例如:蜂巢式手機,無線區域網路,直播衛星,全球定位系統等等皆有使用到介電材料。奈米級氧化鋁陶瓷是很值得去研究其微波介電特性,因為它具有 K = 10,Q×f = 521,000 GHz, tf = -48.9 ppm/℃的微波介電特性,並使用XRD及SEM來加以鑑定及分析。
    (2) 為了得到較低的燒結溫度,使用奈米級(α+θ)-Al2O3作為起始粉末,這樣不但降低了燒結溫度而且提高其品質因素。至於晶粒成長侷限於θ-Al2O3的量,也因為如此而提高氧化鋁的密度。
    (3) 為了達到溫度穩定的材料,奈米級二氧化鈦將添加到奈米級氧化鋁中,這是由於二氧化鈦具有正的溫度係數。當添加8wt%的二氧化鈦時,將可以得到一個較好的微波介電特性如下:K = 10.81,Q×f = 338,000 GHz,tf = 1.3 ppm/oC。

    [b] (Mg0.95Zn0.05)TiO3陶瓷系統之微波介電特性
    由於(Mg0.95Zn0.05)TiO3陶瓷系統具有 K = 17.05,Q×f = 264,000 GHz,tf = -40.31 ppm/℃的微波介電特性,雖然有好的Q×f值,但其溫度頻率係數仍為負值,因此有改善的空間。為了達到溫度頻率係數為零的目標,將SrTiO3、(Na0.5La0.5)TiO3和(Na0.5Nd0.5)TiO3分別與(Mg0.95Zn0.05)TiO3混和。這些兩相系統的微結構與微波介電特性將進一步的討論分析。

    二、使用奈米級氧化鋁粉末為靶材之薄膜製作
    薄膜技術已經成為今日積體電路的主要技術,至於低漏電流的介電薄膜就變得非常重要。在本研究中,薄膜的結構及表面特性將被沈積參數所影響,例如:沈積壓力、基板溫度、以及功率等製程參數。因此,薄膜的電特性及物理相關分析也會加以討論。

    三、 微波微帶濾波器之設計與製作
    以第一部份完成之低損介電材料為基板,設計一個微帶線帶通濾波器,其中包括設計的方式、製程所使用的條件等觀念及技術,完成了由材料到設計元件,皆由自行製作的濾波器。

    Recently, many researchers emphasize the importance of microwave dielectric materials due to the rapid progress on the satellite and mobile communications such as cellular phones, wireless local area networks (WLAN), direct broadcasting satellite (DBS). For miniaturized requirements of microwave communication devices, dielectric materials must be further improved and achieve an objective of high quality. Therefore, low loss microwave dielectric materials can be utilized in designing high-quality devices in communication system. The integration of dielectric materials is also main method to carry out the miniaturization of microwave devices. As mentioned above, the main investigation of this article include three parts which are the study of low-loss microwave dielectric materials, the fabrication of alpha alumina (α-Al2O3) films using nano-scaled target powders deposited on n-type Si(100) substrates, and their applications on planar filters at the microwave frequency.

    1. The study of low-loss microwave dielectric materials:
    [a] Investigation of nano-scaled alumina ceramics:
    (1) Alumina is a popular dielectric material in mobile communications. It is always applied in microwave systems such as in dielectric resonators, filters, and antennas. Nano-scaled alumina is worthy to investigate its microwave properties. In this thesis, the nano-scaled alumina samples show that a dielectric constant of 10, a high Q×f value of 521,000 (at 14 GHz) and the temperature coefficient of resonant frequency of -48.9 ppm/℃ can be obtained at sintering temperature of 1550℃ for 4 h. Sintered ceramic samples were characterized by X-ray and scanning electron microscopy (SEM).
    (2) In order to get lower sintering temperature, using the nano-scaled (α+θ)-Al2O3 powders can effectively increase the value of the quality factor and lower the sintering temperature of the ceramic samples. Grain growth can be limited with θ-phase Al2O3 addition and high density alumina ceramics can be obtained with smaller grain size comparing to pure α-Al2O3.
    (3) For achieving a temperature-stable material, nano-scaled TiO2, having a large positive value, was added to nano-scaled alumina. A dielectric constant of 10.81, a high Q×f value of 338,000 GHz (measured at 14 GHz) and a temperature coefficient of resonant frequency of 1.3 ppm/oC were obtained for nano-scaled alpha alumina with 8 wt% TiO2 sintered at 1350oC for 4 h.

    [b] Microwave dielectric properties of (Mg0.95Zn0.05)TiO3 ceramic system:
    (Mg0.95Zn0.05)TiO3 is a popular dielectric material and possesses high dielectric constant (K ~ 17.05), high quality factor (Q×f value ~ 264,000 GHz) and negative tf value (-40.31 ppm/oC). In order to achieve a temperature-stable material, SrTiO3, (Na0.5La0.5)TiO3, and (Na0.5Nd0.5)TiO3, were added to (Mg0.95Zn0.05)TiO3, respectively. The microstructures and the microwave dielectric properties of these two-phase systems were investigated. Two-phase system was confirmed by the XRD patterns. Evaporation of Zn occurred at temperatures higher than 1300℃ and caused an increase in the dielectric loss of these systems.

    2. The fabrication of alpha alumina (α-Al2O3) films using nano-scaled target powders:
    Because thin-film technology has become a major requirement for integrated circuit today, developing dielectric films with lower leakage current is very important for microwave communication system. In this study, the structural and morphological characteristics of the films affected by deposition conditions, such as deposited pressures, substrate temperatures and rf powers. The electrical and physical properties of the films were investigated.

    3. Design and fabrication of planar filters at the microwave frequency:
    A band-pass filter of SIR with a skew-symmetric feed structure is presented. In this article, using the high permittivity ceramic substrate to miniaturize the sizes of Butterworth band-pass filters is investigated. The selectivity and stop-band rejection of the designed filters can be improved significantly by utilizing a skew-symmetric (zero degree) feed structure. These factors result reduce the size of the filter. The responses of the Butterworth filters using Al2O3 with 8 wt% TiO2 additions (K = 10.81, tanδ = 0.00004) and 0.96(Mg0.95Zn0.05)TiO3-0.04SrTiO3 ( K = 20.96, tanδ = 0.00007) ceramic substrates are designed at a center frequency of 2.45 GHz. The compact size, low-loss, sharp response and performance of the filter are presented in this paper.

    Abstract……………………………………………………I Contents……………………………………………………VIII Table Captions……………………………………………XI Figure Captions…………………………………………XII Chapter 1 Introduction…………………………………1 Chapter 2 Theory……………………………………… 10 2-1 Measurement of Dielectric Resonator…………10 2-2 Thin Film……………………………………………11 2-2-1 Surface Morphology of Film …………………11 2-2-2 I-V Characteristic of Film …………………12 2-2-3 C-V Characteristic of Film………………14 2-3 Basic Theory of Microwave Filter ……………17 Chapter 3 Investigation of Nano-Scaled Alumina Ceramics…21 3-1 Experimental Procedures……………………………………………21 3-2 Results and Discussion……………………………………………23 3-2-1 Nano-Scaled α-Al2O3 Ceramics………………………………………………23 3-2-2 Nano-Scaled (α+θ)-Al2O3 Ceramics…………………………………………25 3-2-3 Nano-Scaled α-Al2O3 and TiO2 Ceramics……………………………………28 Chapter 4 Microwave Dielectric Properties of (Mg0.95Zn0.05)TiO3 System…………..35 4-1 Experimental Procedures……………………………………………………………..35 4-2 Results and Discussion……………………………………………………………….36 4-2-1 (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 Ceramic System…………………………….36 4-2-2 (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5La0.5)TiO3 Ceramic System…………………...40 4-2-3 (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 Ceramic System…………………..43 Chapter 5 RF Magnetron Sputtered Alpha Alumina (α-Al2O3) Films Using Nano-scaled Target Powders…………………………………………….46 5-1 Experimental Procedures……………………………………………………………..46 5-1-1 Clean Substrate…………………………………………………………………46 5-1-2 Deposition Process……………………………………………………………..47 5-1-3 Analysis of Physical Properties of Films……………………………………….47 5-1-4 Analysis of Electrical Properties of Films……………………………………...48 5-2 Results and Discussions………………………………………………………………48 5-2-1 Crystal Structure and Composition……………………………………………..48 5-2-2 Microstructure and Surface Morphology……………………………………….49 5-2-3 Electrical Properties of Alpha Alumina Thin Films……………………………50 Chapter 6 Using Low Loss Ceramic Substrates to Design Bandpass Filter with Zero-Degree Feed Structure……………………………………………….53 6-1 Stepped Impedance Resonator (SIR)…………………………………………………53 6-1-1 Basic Structure of SIR………………………………………………………….53 6-1-2 Resonance Conditions and Resonator Electrical Length……………………….54 6-1-3 Theory of the Zero Degree Feed structure……………………………………...55 6-2 Filter Design…………………………………………………………………………..57 6-3 Simulated and Measured Results……………………………………………………..58 Chapter 7 Conclusions and Future Works……………………………………………..60 7-1 Conclusions………………………………………...60 7-2 Future Works……………………………………….65 References………………………………………………..66 Tables………………………………………………….72 Figures…………………………………………………77 Table Captions Table 1-1 The recent development for microwave dielectric materials…………………..72 Table 3-1 Basic physical properties of starting nano (α+θ)-Al2O3 powders……………...73 Table 3-2 Relations of relative density of green samples and pressing pressure for nano-scaled alpha alumina………………………………………………….73 Table 3-3 Impurities analyses of nano α-Al2O3 powders of purity 99.883%......................73 Table 3-4 The EDS data of the nano α-Al2O3 ceramics with TiO2 additions sintered at 1400oC for 4 h……………………………………………………..74 Table 3-5 Comparison of microwave dielectric properties of sintered Al2O3…………….74 Table 4-1 EDX data of 96MZST ceramics for spots A, B, C, and D……………………...75 Table 4-2 The EDX data of the 96MZST ceramics sintered from 1225 to 1350oC and the surfaces of all the samples coated by carbon…………………………75 Table 4-3 Lattice parameters of (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramics sintered at 1300oC………………………………………………………………75 Table 4-4 Microwave dielectric properties of (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system sintered at 1300C for 4 h……………………………………..76 Table 5-1 Sputtering parameters in the experiment……………………………………….76 Table 6-1 Dimensions of microstrip bandpass filter with different ceramic substrates……………………………………………….76 Figure Captions Fig. 2-1 Courtney holder as a test set for measuring microwave dielectric properties…...77 Fig. 2-2 Schematic representation of the general physical structure of the thin film prepared under low mobility condition………………………………………………….....77 Fig. 2-3 A schematic diagram displaying (a) the Poole-Frenkel (PF) and (b) the enhanced Schottky emission transport mechanism…………………………………………78 Fig. 2-4 Energy bands, and charge distribution in a MIS structure under various bias conditions, in the absence of the surface states and work function difference (Ideal Case)……………………………………………………………………………...78 Fig. 2-5 Typical CV plot of high- frequency for n-type substrate…………………….......79 Fig. 2-6 Three types of the filters (a) Maximally Flat (b) Chebyshev (c) Elliptic Function……………………………………………………………..79 Fig. 2-7 Low pass prototype filter…………………………………………………………80 Fig. 2-8 Bandpass filter circuits using J and K inverters…………………………………..80 Fig. 3-1 The particle size distribution of the nano alpha alumina powders………………..81 Fig. 3-2 The sintering shrinkage curve of the nano alpha alumina ceramics……………...81 Fig. 3-3 XRD patterns of nano alpha alumina ceramics sintered at (a) 1350, (b) 1400, (c) 1450, (d) 1500, and (e) 1550℃ for 4 h…………………………………………..82 Fig. 3-4 SEM micrographs of nano alpha alumina ceramics sintered at (a) 1350, (b) 1400, (c) 1450, (d) 1500, and (e) 1550℃ for 4 h…………………………………….....83 Fig. 3-5 Relative densities of nano alpha alumina ceramics sintered at different temperatures……………………………………………………………………84 Fig. 3-6 Dielectric constant of nano alpha alumina ceramics sintered at different temperatures……………………………………………………………………84 Fig. 3-7 Q × f values of nano alpha alumina ceramics sintered at different temperatures…85 Fig. 3-8 Temperature coefficient of resonant frequency ( ) of nano alpha alumina ceramics sintered at different temperatures……………………………………..85 Fig. 3-9 (a) The particle size distribution of starting nano (α+θ)-Al2O3 powders (b) The XRD phase identification of starting nano (α+θ)-Al2O3 powders………………86 Fig. 3-10 Thermal shrinkage curve of the green compact prepared by starting nano (α+θ)-Al2O3 powder ……………………………………………………………..87 Fig. 3-11 X-ray diffraction patterns of the nano (α+θ)-Al2O3 ceramics sintered at 1400℃ for (a) 2 h (b) 4 h (c) 8 h………………………………………………………...87 Fig. 3-12 SEM micrographs (×30k) of the specimens sintered at 1400℃ using nano (α+θ)-Al2O3 for (a) 2 h (b) 4 h (c) 8 h…………………………………………88 Fig. 3-13 The relative densities of the nano (α+θ)-Al2O3 ceramics as a function of its sintering time at 1400℃………………………………………………………...89 Fig. 3-14 The dielectric constant of the nano (α+θ)-Al2O3 ceramics as a function of its sintering time at 1400℃…………………………………………………….....89 Fig. 3-15 The Q × f value of the nano (α+θ)-Al2O3 ceramics as a function of its relative density………………………………………………………………………....90 Fig. 3-16 The temperature coefficients of resonant frequency ( ) of the nano (α+θ)-Al2O3 ceramics as a function of its sintering time at 1400℃………………………...90 Fig. 3-17 The SEM micrograph of nanometer-scaled (a) α-Al2O3 and (b) TiO2 powders...91 Fig. 3-18 Shrinkage of the nano α-Al2O3 samples with 0.25-8 wt% TiO2 additions……...91 Fig. 3-19 XRD patterns of the nano α-Al2O3 ceramics with (a) 0.25 wt% (b) 0.5 wt% (c) 8 wt% TiO2 additions sintered at different sintering temperatures…………….....92 Fig. 3-20 XRD patterns of the nano α-Al2O3 ceramics with TiO2 additions sintered at 1400oC for 4 h…………………………………………………………………93 Fig. 3-21 SEM micrographs of the sintered specimens using nano α-Al2O3 ceramics with (a) 0.25 wt% (b) 0.5 wt% (c) 1 wt% (d) 2 wt% (e) 4 wt% (f) 8 wt% TiO2 additions at 1400oC/4h…………………………………………………………………...94 Fig. 3-22 The apparent density of the nano α-Al2O3 ceramics with TiO2 additions as a function of its sintering temperature for 4 h…………………………………...95 Fig. 3-23 The dielectric constants of the nano α-Al2O3 ceramics with TiO2 additions as a function of its sintering temperature for 4 h………………………………….....95 Fig. 3-24 The Q × f values of the nano α-Al2O3 ceramics with TiO2 additions as a function of its sintering temperature for 4 h………………………………………….....96 Fig. 3-25 The temperature coefficients of resonant frequency ( ) of the nano α-Al2O3 ceramics with TiO2 additions as a function of its sintering temperature for 4 h……………………………………………………………………….....96 Fig. 3-26 Apparent densities of the nano α-Al2O3 ceramics as a function of TiO2 addition sintered at 1400oC for 4 h…………………………………………………….....97 Fig. 3-27 Q × f values of the nano α-Al2O3 ceramics as a function of TiO2 addition sintered at 1400oC for 4 h………………………………………………………………..97 Fig. 3-28 Energy dispersion spectrum (EDS) analysis of the Al2TiO5 phase……………..98 Fig. 4-1 X-ray diffraction patterns of 96MZST ceramics sintered at different sintering temperatures for 4 h…………………………………………………………......99 Fig. 4-2 SEM photographs of 96MZST ceramics sintered at (a) 1225C (b) 1250C (c) 1275C (d) 1300C (e) 1325C (f) 1350C for 4 h……………………………100 Fig. 4-3 Marks of SEM for the 96MZST ceramics sintered at 1300oC…………………..101 Fig. 4-4 Typical energy dispersive X-ray (EDX) analysis of the sintered specimen…….101 Fig. 4-5 Apparent density of 96MZST ceramics as a function of its sintering temperature……………………………………………………………………...102 Fig. 4-6 Dielectric constant of 96MZST ceramics as a function of its sintering temperature……………………………………………………………………..102 Fig. 4-7 Q × f value of 96MZST ceramics as a function of its sintering temperature…...103 Fig. 4-8 value of (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 ceramic system sintered at 1300C for 4 h with different x values…………………………………………………..103 Fig. 4-9 X-ray diffraction patterns of 88MZNLT ceramics sintered at different sintering temperatures for 4 h……………………………………………………………..104 Fig. 4-10 SEM photographs of 88MZNLT ceramics sintered at (a) 1250℃ (b) 1275℃ (c) 1300℃ (d) 1325℃ (e) 1350℃ for 4 h………………………………………...105 Fig. 4-11 (a) the marks of SEM for the 88MZNLT ceramics sintered at 1300oC (b) EDX data of 88MZNLT ceramics for spots A ~ C…………………………………106 Fig. 4-12 Apparent density of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5La0.5)TiO3 ceramic system as a function of its sintering temperature………………………………………..108 Fig. 4-13 Dielectric constant of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5La0.5)TiO3 ceramic system as a function of its sintering temperature…………………………………….108 Fig. 4-14 Q × f value of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5La0.5)TiO3 ceramic system as a function of its sintering temperature…………………………………………109 Fig. 4-15 value of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5La0.5)TiO3 ceramic system as a function of its x values……………………………………………………….109 Fig. 4-16 X-ray diffraction patterns of 84MZNNT ceramics sintered at different sintering temperatures for 4 h…………………………………………………………..110 Fig. 4-17 SEM photographs of 84MZNNT ceramics sintered at (a) 1250℃ (b) 1275℃ (c) 1300℃ (d) 1325℃ (e) 1350℃ for 4 h……………………………………….111 Fig. 4-18 (a) the marks of SEM for the 84MZNNT ceramics sintered at 1300oC (b) EDX data of 84MZNNT ceramics for spots A ~ C………………………………...112 Fig. 4-19 Apparent density of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 ceramic system as a function of its sintering temperature………………………………………..114 Fig. 4-20 Dielectric constant of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 ceramic system as a function of its sintering temperature…………………………………….114 Fig. 4-21 Q × f value of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 ceramic system as a function of its sintering temperature…………………………………………..115 Fig. 4-22 value of (1-x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 ceramic system as a function of its x values……………………………………………………….115 Fig. 5-1 XRD patterns of alpha alumina thin films with (a) different rf powers at a fixed substrate temperatures of 450℃ and (b) various substrate temperatures at a fixed rf power of 400 W……………………………………………………………..116 Fig. 5-2 SEM micrographs of alpha alumina thin films with (a) different rf powers at a fixed substrate temperatures of 450℃ and (b) various substrate temperatures at a fixed rf power of 400 W……………………………………………………….118 Fig. 5-3 AFM surface morphology of alpha alumina thin films with different rf powers at a fixed substrate temperatures of 450℃, (a) 200 W, rms: 10.047 nm, (b) 300 W, rms: 8.204 nm, and (c) 400 W, rms: 6.213 nm………………………………...119 Fig. 5-4 AFM surface morphology of alpha alumina thin films with various substrate temperatures at a fixed rf power of 400 W. (a) 350℃, rms: 8.650 nm, (b) 400℃, 7.287 nm, and (c) 450℃, 6.213 nm……………………………………………120 Fig. 5-5 The I-V curves of the Pt/Al2O3/Si MIS structure with (a) different rf powers at a fixed substrate temperatures of 450℃ and (b) various substrate temperatures at a fixed rf power of 400 W……………………………………………………….121 Fig. 5-6 The dissipation factor of alpha alumina thin films with (a) different rf powers at a fixed substrate temperatures of 450℃ and (b) various substrate temperatures at a fixed rf power of 400 W……………………………………………………….122 Fig. 5-7 Thickness of alpha alumina thin films with (a) different rf powers at a fixed substrate temperatures of 450℃ and (b) various substrate temperatures at a rf power of 400 W………………………………………………………………..123 Fig. 5-8 The C-V curves (f = 10 MHz) of the Pt/Al2O3/Si MIS structure at a fixed substrate temperatures of 450℃ and a fixed rf power of 400 W………………………..124 Fig. 5-9 Dielectric constant of alpha alumina thin films with (a) different rf powers at a fixed substrate temperatures of 450℃ and (b) various substrate temperatures at a fixed rf power of 400 W……………………………………………………….125 Fig. 6-1 Basic structures of SIR (a) Quarter-wavelength type and (b) Half-wavelength type………………………………………………………..126 Fig. 6-2 Electrical parameters of elementary SIR………………………………………..126 Fig. 6-3 Resonance condition of SIR…………………………………………………….127 Fig. 6-4 Equivalent circuit of a feed structure………………………………………...127 Fig. 6-5 Layout of the microstrip bandpass filter with capacitive loads…………………128 Fig. 6-6 Simulated frequency responses for (a) AT and (b) 96MZST ceramic substrates.129 Fig. 6-7 Measured frequency responses for (a) AT and (b) 96MZST ceramic substrates..130 Fig. 6-8 Photograph of the filter prototypes: (a) AT and (b) 96MZST ceramic substrates……………………………………………………………………..131

    [1] S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, Am. Ceram. Soc. Bull., 66 (1987) 1405.
    [2] K. Wakino, K. Minai, and H. Tamura, J. Am. Ceram. Soc., 67 (1984) 278.
    [3] T. Kakada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 1909.
    [4] T. Kakada, S. F. Wang, S. Yoshikawa, S. J. Yang, and R. E. Newnham, J. Am. Ceram. Soc., 77 (1994) 2485.
    [5] S. I. Hlrano, T. Hayashi, and A. Hattori, J. Am. Ceram. Soc., 74 (1991) 1320.
    [6] V. Tolmer and G. Desqardin, J. Am. Ceram. Soc., 80 (1997) 1981.
    [7] C. L. Huang and Y. B. Chen, Jpn. J. Appl. Phys., 44 (2005) 6706.
    [8] K. Wakino, Ferroelectrics 91 (1989) 69.
    [9] H. J. Lee, I. T. Kim, and K. S. Hong, Jpn. J. Appl. Phys., 36 (1997) 1318.
    [10] C. L. Huang, R. J. Lin, and J. J. Wang, Jpn. J. Appl. Phys., 41 (2002) 758.
    [11] H. J. Youn, K. Kim, Jpn. J. Appl. Phys., 35 (1996) 3947.
    [12] S. Y. Cho, C. H. Kim, and D. W. Kim, J. Mater. Res., 14 (1999) 2484.
    [13] M. H. Weng, T. J. Liang, and C. L. Huang, Journal of the European Ceramic Society, 22 (2002) 1693.
    [14] C. L. Huang and M. H. Weng, Jpn. J. Appl. Phys., 38 (1999) 5949.
    [15] H. M. Bryan and J. J. Thomson, J. Am. Ceram. Soc., 57 (1974) 522.
    [16] A. Kan, H. Ogawa, T. Oishi, A. Yokoi, and H. Ohsato, Jpn. J. Appl. Phys., 44 (2005) 7103.
    [17] P. V. Bijumon, P. Mohanan, and M. T. Sebastian, Jpn. J. Appl. Phys., 41 (2002) 3384.
    [18] H. Zhang, L. Fang, R. Dronskowski, P. Mueller, and R. Z. Yuan, J. Solid-State Chem., 177 (2004) 4007.
    [19] N. M. Alford and S. J. Penn, J. Appl. Phys., 80 (1996) 5895.
    [20] C. L. Huang, J. J. Wang, and C. Y. Huang, Mater. Lett., 59 (2005) 3746.
    [21] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, Jpn. J. Appl. Phys., 43 (2004) 749.
    [22] Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, J. Euro. Ceram. Soc., 26 (2006) 2093.
    [23] A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, and N. M. Alford, J. Am. Ceram. Soc., 83 (2000) 95.
    [24] J. W. Choi, S. J. Yoon, H. J. Kim, and K. H. Yoon, Jpn. J. Appl. Phys., 41 (2002) 3804.
    [25] W. C. Tzou, Y. C. Chen, S. L. Chang, and C. F. Yang, Jpn. J. Appl. Phys., 41 (2002) 7422.
    [26] J. S. Reed: Principles of Ceramics processing, 2nd (Wiley, 1995), p. 219-222.
    [27] R. C. Kell, A. C. Greenham, and G. C. E. Olds, J. Am. Ceram. Soc., 56 (1973) 352.
    [28] V. M. Ferreira, F. Azough, J. L. Baptista, and R. Freer, Ferroelectrics, 133 (1992) 127.
    [29] V. M. Ferreira, F. Azough, R. Freer, and J. L. Baptista, J. Mater. Res., 12 (1997) 3293.
    [30] V. M. Ferreira, J. L. Baptista, S. Kamba, and J. Petzelt, J. Mater. Sci., 28 (1993) 5894.
    [31] C. L. Huang and M. H. Weng, Mater. Res. Bull., 36 (2001) 2741.
    [32] H. T. Kim, J. D. Byun, and Y. Kim, Mater. Res. Bull., 33 (1998) 975.
    [33] M. L. Hsieh, L. S. Chen, S. M. Wang, C. H. Sun, M. H. Weng, and M. P. Houng, Jpn.
    J. Appl. Phys., 44 (2005) 5045.
    [34] H. T. Kim, S. Nahm, and J. D. Byun, J. Am. Ceram. Soc., 82 (1999) 3476.
    [35] C. L. Huang and S. S. Liu, Jpn. J. Appl. Phys., 46 (2007) 283.
    [36] X. Guo, X. Wang, Z. Luo, and T. Tamagawa, Proc. Int. Electron Device Meet. Dig.,
    377. (1998) (IEEE, Piscataway, NJ, 1998).
    [37] D. Park, Q. Lu, T. King, C. Hu, A. Kainitsky, S. Tay, and C. Cheng, Proc. Int. Electron
    Device Meet. Dig., 381. (1998) (IEEE, Piscataway, NJ, 1998).
    [38] M. Shahjahan, N. Takahashi, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys., 41, (2002) 1474.
    [39] M. Ishida, I. Katakabe, and T. NaKamura, Appl. Phys. Lett., 52, (1988) 1326.
    [40] Y. C. Jung, H. Miura, and M. Ishida, Jpn. J. Appl. Phys., 38, (1999) 2333.
    [41] S. B. Cohn, IRE Trans Microwave Theory Tech., 6 (1958) 223.
    [42] S. Caspi and J. Adelman, IEEE Trans Microwave Theory Tech., 36 (1988) 759.
    [43] U. H. Gysel, IEEE Trans Microwave Theory Tech., 22 (1974) 523.
    [44] E. G. Cristal and S. Frankel, IEEE Trans Microwave Theory Tech., 20 (1972) 719.
    [45] J. S. Hong and M.J. Lancaster, IEEE Trans Microwave Theory Tech., 46 (1998) 118.
    [46] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, IEEE Trans Microwave
    Theory Tech., 45 (1997) 1226.
    [47] M. Sagawa, K. Takahashi, and M. Makimoto, IEEE Trans Microwave Theory Tech.,
    37 (1989) 1991.
    [48] C. M. Tsai, S. Y. Lee, and H. M. Lee, IEEE Trans Microwave Theory Tech., 51 (2003) 1517.
    [49] C. M. Tsai, S. Y. Lee, and C. C. Tsai, IEEE Trans Microwave Theory Tech., 50 (2002) 2362.
    [50] B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory Tech., 16 (1985) 402.
    [51] Y. Kobayashi and M. Katoh, IEEE Trans. Microwave Theory Tech., 33 (1985) 586.
    [52] R. Messier and R. C. Ross, J. Vac. Sci. Technol. A, 2 (1984) 500.
    [53] S. Agarwal, G. L. Sharma, and R. Manchanda, Solid State Communications, 119 (2001) 681.
    [54] S. M. Sze, Physics of Semiconductor Devices, 2nd, Wiley, New York, (1981).
    [55] J. O’Dwyer, Theory of Electrical Conduction and Breakdown in Solid Dielectric, Clarendon, Oxford, England, (1973).
    [56] P. Li and T. M. Lu, Physical Review B, 43 (1991) 14261.
    [57] T. Mihara and H. Watanbe, Jpn. J. Appl. Phys., 34 (1995) 5664.
    [58] A. Grove, B. E. Deal, E. H. Show, and C. T. Sah, Solid-State Electronics, 18 (1965) 145.
    [59] D. G. Ong, Modern MOS Technology: Process, Devices and Design, McGraw-Hill Inc., (1994).
    [60] G. Matthaei, L. Young, and E. M. T Jones, “Microwave Filters, Impedance-Matching Networks and Coupling structures,” McGraw-Hill, New York, (1964).
    [61] B. D. Silvermann, Phys. Rev., 125 (1962) 1921.
    [62] K. Haga, T. Ishii, J. I. Mashiyama, and T. Ikeda, Jpn. J. Appl. Phys., 31 (1992) 3156.
    [63] R. D. Shannon, Acta Cryst., A 32 (1976) 751.
    [64] P. H. Sun, T. Nakamura, Y. J. Shan, Y. Inaguma, M. Itoh, and T. Kitamura, Jpn. J. Appl. Phys., 37 (1998) 5625.
    [65] H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, and S. Nakano,
    Jpn. J. Appl. Phys., 30 (1991) 2339.
    [66] M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys., 82 (1997) 3482.
    [67] P. Bhattacharya, T. Komeda, K. Park, and Y. Nishioika, Jpn. J. Appl. Phys., 32 (1993) 4103.
    [68] M. Makimoto, and S. Yamashita, IEEE Trans. Microwave Theory Tech., 45 (1980) 1078.
    [69] T. Edwards, Foundations for Microstrip Circuit Design, 2nd ed. New York: Wiley, 1992, ch. 5.
    [70] A. B. Williams and F.J. Taylor, Electronic Filter Design Handbook, 3rd ed. New York: McGraw-Hill, 1995, ch. 5.

    無法下載圖示 校內:2037-06-17公開
    校外:2037-06-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE