| 研究生: |
張上濮 Chang, Shang-Pu |
|---|---|
| 論文名稱: |
三維邊界元素法探討異向性岩石之應力強度因子 Determination of the SIFs of Anisotropic rocks Using 3D BEM |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 異向性岩石 、應力強度因子 、雙裂縫 、矩形 、圓柱體 |
| 外文關鍵詞: | anisotropic rock, stress intensity factor (SIF), dual-crack, cuboid, cylinder |
| 相關次數: | 點閱:133 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為將特殊九節點四邊形元素應用在離散未開裂邊界以及異向性岩石性質的矩形體與圓柱體試體中的雙/單裂縫,使用FORTRAN語言撰寫程式,利用三維單域邊界元素法(或稱對偶邊界元素法)探討三維情況下異向性岩石的混合模態應力強度因子。
在本文中,對於異向性岩石性質的矩形體雙裂縫、圓柱體單裂縫試體,模擬在受到垂直張力加載情況下,分別提出三種不同的案例情況加以探討分析。首先,在矩形體雙裂縫案例中,可看到當裂縫垂直距離越來越靠近時,應力強度因子的數值趨勢會越來越小。再來是圓柱體內部矩形裂縫案例,可以發現到當裂縫旋轉角度增加時,沿著裂縫前緣的模態I型正規化應力強度因子數值會有減少的下降趨勢。最後,在圓柱體邊緣裂縫案例中,可發現到當裂縫開裂越深時,模態I型的應力強度因子會有增加的上升趨勢。此外,當裂縫旋轉至45度時,相對於其他角度,模態I-II-III的應力強度因子會有較大程度的變化情況。
本研究之主要特色與貢獻,為與以往研究單一裂縫情況相比,探討了解多裂縫在異向性岩石性質下的情況,以及將其應用於圓柱形試體的模擬建立。
The purpose of this study is to present the nine-node quadrilateral elements to discretize the un-cracked boundary and the dual/single -crack in an anisotropic cuboid/cylinder rocks. The FORTRAN program developed is to determine the three-dimensional(3D) mixed–mode stress intensity factors(SIFs) by using 3D single-domain boundary element method(BEM) or dual-BEM.
Three cases are presented for dual-cracked cuboid or single-cracked cylinder which are transversely isotropic under a uniform vertical traction. The first cases of the dual-cracked cuboid show that the SIF values are smaller when the vertical distance of two cracks becomes closer. The second cases of a rectangular crack within the cylinder observe that the variation of the normalized mode-I SIF along the crack front decreases with increasing crack orientation angles. In the final cases, a edge crack within the cylinder show that the variation of the normalized mode-I SIF increases with increasing crack depth. Furthermore, the magnitude of the maximum in mode I-II-III SIF when the crack orientation equal to 45 degree is larger than otherwise angles.
The first characteristic of this thesis knows the dual-crack of the anisotropic rocks with compared previous research of the single-crack. The second characteristic is applied to construction of cylindrical specimens.
1. 陳家豪 “邊界元素法於異向性岩石破壞力學之研究”,博士論文,成功大學,2008。
2. 涂俊嘉 “利用邊界元素法探討異向性岩石於模態III型之應力強度因子”,碩士論文,成功大學,2009。
3. 涂家輝 “異向性雙合成材料之破壞力學性質分析”,碩士論文,成功大學,2002。
4. 柯建仲 “利用邊界元素法探討異向性岩石之裂縫傳播路徑”,博士論文,成功大學,2007。
5. Abdul, M.M.J. and Fenner, R.T. Some boundary integral equation solutions for three-dimensional stress concentration problems, J. Strain Anal., 18(4), 207-215, 1983.
6. Agrawal, A.K. Free surface effect on moving crack under impact loading by BEM, Engng. Anal. Boundary Elements, 26, 253-264, 2002.
7. Albuquerque, E.L., Sollero, P. and Fedelinski, P. Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems, Comput. Struct., 81, 1703-1713, 2003.
8. Aliabadi, M.H. Boundary element formulations in fracture mechanics, Appl. Mech. Rev., 50, 83-96, 1997.
9. Al-Shayea, N.A., Khan, K. and Abduljauwad, S.N. Effects of confining pressure and temperature on mixed mode(I+II) fracture toughness of a limestone rock, Int. J. Rock Mech. Min. Sci., 37, 629-643, 2000.
10. Antonio, J. and Tadeu, A. 3D seismic response of a limited valley via BEM using 2.5D analytical Green’s function for an infinite free-rigid layer, Soil Dyn. Earthq. Engng., 22, 659-673, 2002.
11. Ariza, M.P. and Dominguez, J. Dynamic BE analysis of 3-D cracks in transversely isotropic solids, Comput. Meth. Appl. Mech. Engng., 193, 765-779, 2004.
12. Atkinson, C., Smelser, R.E. and Sanchez, J. Combined mode fracture via the cracked Brazilian disk test, Int. J. Frac., 18(4), 279-291, 1982.
13. Awaji, H. and Sato, S. Combined mode fracture toughness measurement by the disk test, J. Engng. Materials Tech., 100, 175-182, 1978.
14. Ayatollahi, M.R. and Hashemi, R. Computation of stress intensity factors (KI, KII) and T-stress for cracks reinforced by composite patching, Comput. Struct., 78, 602-609, 2007.
15. Blackburn, W.S. Three dimensional calculation of growth of cracks starting in parallel planes by boundary elements, Int. J. Fatigue, 21, 933-939, 1999.
16. Carini, A. and Gioda, G. A boundary integral equation technique for visco-elastic stress analysis, Int. J. Num. Anal. Meth. Geom., 10, 585-608, 1986.
17. Chatterjee, J., Ma, F., Henry, D.P. and Banerjee, P.K. Two- and three-dimensional transient heat conduction and thermoelastic analyses by BEM via efficient time convolution, Comput. Meth. Appl. Mech. Engng., 196, 2828-2838, 2007.
18. Chen, C. S., Pan, E., and Amadei, B., Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int. J. Rock Mech. Min. Sci., 35(2), 195-218, 1998.
19. Chen, C.H. and Chen, C.S. Pan, E., Tseng H.C. and YU P.S. Boundary element analysis of mixed-mode stress intensity factors in an anisotropic cuboid with an inclined surface crack, Engng. Comput., 26(8), 1056-1073, 2009. 20. Chen, C.H., Chen, C.S. and Wu, J.H. Fracture toughness analysis on cracked ring disks of anisotropic rock, Rock Mech. Rock Engng., 41(4), 539-562, 2007.
21. Chen, C.S. and Chen C.H., and Pan, E. Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations, Engng. Anal. Boundary Elements, 33, 128-136, 2008.
22. Chen, C.S., Pan, E. and Amadei, B. Determination of deformability and tensile strength of anisotropic rock using Brazilian tests, Int. J. Rock Mech. Min. Sci., 35(1), 43-61, 1998.
23. Cisilino, A.P. and Ortiz, J. Boundary element analysis of three-dimensional mixed-mode cracks via the interaction integral, Comput. Meth. Appl. Mech. Engng., 194, 935-956, 2005.
24. Cruse, T.A. Application of the boundary integral equation method to three-dimensional stress analysis, Comput. Struct., 3, 509-527, 1973.
25. Cruse, T.A. Numerical solutions in three dimensional elastostatics, Int. J. Solids Structures, 5, 1259-1274, 1969.
26. dell’Erba, D.N. and Aliabadi, M.H. On the solution of three-dimensional thermoelastic mixed-mode edge crack problems by the dual boundary element method, Engng. Fract. Mech., 66, 269-285, 2000.
27. Fenner, R.T. The boundary integral equation(boundary element) method in engineering stress analysis, J. Strain Anal., 18(4), 199-205, 1983.
28. Fredholm, E.I. Sur une class d’equations functionelles, Acta Math., 27, 365-390, 1903.
29. Gaul, L. Schanz, M. A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains, Comput. Meth. Appl. Mech. Engng., 179, 111-123, 1999.
30. Griffith, A.A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London, A221, 163-198, 1920.
31. Hatzigeorgiou, G.D. and Beskos, D.E. Static analysis of 3D damaged solids and structures by BEM, Engng. Anal. Boundary. Elem., 26, 521-526, 2002.
32. He, W.J., Lin, Y. and Ding, H.J. A three-dimensional formula for determining stress intensity factors in finite element analysis of cracked bodies, Engng. Fract. Mech., 57(4), 409-415, 1997.
33. Irwin, G. R., Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech., 24, 361-364, 1957.
34. Irwin, G.R. Crack extension force for a part-through crack in a plate, J. Appl. Mech. Trans. ASME, 29(4), 651-654, 1962.
35. Jaswon, M.A. and Symm, G.T. Integral equation methods in potential theory and elastostatics, Academic Press, London, 1977.
36. Jaswon, M.A. Integral equation methods in potential theory –I, Proc. Roy. Soc. Lond., A275, 23-32, 1963.
37. Kupradze, O.D. Potential methods in the theory of elasticity, Daniel Davy, New York, 1965.
38. Lazarus, V., Leblond, J.B. and Mouchrif, S.E. Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part I: Calculation of stress intensity factors, J. Mech. Physics Solids, 49, 1399-1420, 2001.
39. Lekhnitskii, S.G. Theory of elasticity of an anisotropic elastic body, translated by P. Fern, Holden-Day, San Francisco, 1963.
40. Leung, A.Y.T. and Su, R.K.L. A numerical study of singular stress field of 3D cracks, Finite Elem. Anal. Design, 18, 389-401, 1995.
41. Liang, L.H., Liu, Y, Jia, G.S. and Yang, J. Elastoplastic and creep line spring models for surface flaws by BEM, Int J. Pres. Ves. Piping, 76, 781-787, 1999.
42. Lim, I.L., Johnston, I.W. and Choi, S.K. Assessment of mixed mode fracture toughness testing methods for rock, Int. J. Rock. Mech. Min. Sci. Geom. Abs., 31(3), 265-272, 1994.
43. Liu, Y., Liang, L.H., Hong , Q.C. and Antes, H. Non-linear surface crack analysis by three dimensional boundary element with mixed boundary conditions, Engng. Fract. Mech., 63, 413-424, 1999.
44. Lo, S.H., Dong. C.Y. and Cheung, Y.K. Integral equation approach for 3D multiple-crack problems, Engng. Fract. Mech., 72, 1830-1840, 2005.
45. Marrin, L. Lesnic, D. Boundary element solution for the Cauchy problem in linear elasticity using singular value decomposition. Comput. Meth. Appl. Mech. Engng., 191, 3257-3270, 2002.
46. Massonnet, C.E. Numerical use of integral procedures in stress analysis, O.C. Zienkiewicz and G.S. Holister (Eds), Wiley, London, 1965.
47. Mi, Y. and Aliabadi, M.H. Dual boundary element method for three-dimensional fracture mechanics analysis, Engng. Anal. Boundary Elem., 10(2), 161-171, 1992.
48. Mukherjee, S. Shi. X. and Mukherjee, Y.X. Integral variables and their sensitivities in three- dimensional linear elasticity by the boundary contour method, Comput. Meth. Appl. Mech. Engng., 187, 289-306, 2000.
49. Muskhelishvili, N.I. Some basic problems of the mathematical theory of elasticity, Noordhoff, Holland, 1953.
50. Niu, Y. and Dravinski, M. Direct 3D BEM for scattering of elastic waves in a homogeneous anisotropic half-space, Wave Motion, 38, 165-175, 2003.
51. Pan, E. and Yuan, F.G. Boundary element analysis of three-dimensional cracks in anisotropic solids, Int. J. Numer. Meth. Engng., 48, 211-237, 2000.
52. Pan, E. and Amadei, B. A 3-D boundary element formulation of anisotropic elasticity with gravity, Appl. Math. Model., 20, 114-120, 1996.
53. Pan, E. and Yang, B. Three-dimensional interfacial Green’s functions in anisotropic biomaterials, Appl. Math. Model., 27, 307-326, 2003.
54. Pan, E., Sassolas, C., Amadei, B. and Pfeffer, W.T. A 3-D boundary element formulation of viscoelastic media with gravity, Comput. Mech., 19, 308-316, 1997.
55. Pan, L., Rizzo, F. and Martin, P.A. Some efficient boundary integral strategies for time-harmonic wave problems in an elastic halfspace, Comput. Meth. Appl. Mech. Engng., 164, 207-221, 1998.
56. Polizzotto, C. A symmetric Galerkin boundary/domain element method for finite elastic deformations, Comput. Meth. Appl. Mech. Engng., 189, 481-514, 2000.
57. Popov, V., Power, H. and Walker, S.P. Numerical comparison between two possible multipole alternative for the BEM solution of 3D elasticity problems based upon Taylor series expansions, Engng. Anal. Boundary Elem., 27, 521-531, 2003.
58. Qin, T.Y., Zhu, B.J. and Noda, N.A. Mixed-mode stress intensity factors of a three-dimensional crack in s bonded biomaterial, Engng. Comput., 25(3), 251-267, 2008.
59. Quinlan, P.M., Grannell, J.J., Atluri, S.N. and Fitzgerald, J.E. Boundary discretization using the edge-function method in three dimensional elasticity, Appl. Math. Model., 3, 18-24, 1979.
60. Rabinovich, A.L. The elastic constants and the stability of anisotropic materials. Trudy TsAGI, 1946.
61. Rizzo, F.J. An integral equation approach to boundary value problems of classical elastostatics, Q. Appl. Math., 25(1), 83-95, 1967.
62. Rizzo F.J. and Shippy, D.J. An advanced boundary integral equation method for three-dimensional thermoelasticity, Int. J. Num. Meth. Engng., 11, 1753-1768, 1977.
63. Singh, R., Carter, B.J., Wawrzynek, P.A. and Ingraffea, A.R. Universal crack closure integral for SIF estimation, Engng. Fract. Mech., 60(2), 133-146, 1998.
64. Somigliana, C. Sopra l’equilibrio di un corpo elastico isotropo. I1 Nuovo Ciemento, 17-19, 1886.
65. Symm, G.T. Integral equation methods in potential theory –II, Proc. Roy. Soc. Lond., A275, 33-46, 1963.
66. Tan, C.L. and Fenner R.T. Three-dimensional stress analysis by the boundary integral equation method, J. Strain Anal., 13, 213-219, 1978.
67. Tafreshi, A shape optimization of two-dimensional anisotropic structures using the boundary element method, J. Strain Anal., 38(3), 219-232, 2003.
68. Ting, T.C.T. Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York, 1996.
69. Tonon, F., Pan, E. and Amadei, B. Green’s functions and boundary element method formulation for 3D anisotropic media, Comp. Stuct., 79, 469-482, 2001.
70. Vogel, S.M. and Rizzo, F.J. An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems, J. Elasticity, 3(3), 203-216, 1973.
71. Wang, C.B. Chatterjee, J. Banerjee, P.K. An efficient implementation of BEM for two-and three-dimensional multi-region elastoplastic analyses, Comput. Meth. Appl. Mech. Engng., 196, 829-842, 2007.
72. Wang, C.D., Tzeng, C.S., Pan, E. and Liao, J.J. Displacements and stresses due to a vertical point load in an inhomogeneous transversely isotropic half-space, Int. J. Rock Mech. Min. Sci., 40, 667-685, 2003.
73. Weaver, J. Three-dimensional crack analysis, Int. J. Solid. Struct., 13, 321-330, 1977.
74. Westergaard, H., Bearing pressures and cracks. Journal of Applied Mechanics., 61, 49-53, 1939.
75. Whittaker, B.N., Singh, R.N. and Sun, G. Rock fracture mechanics: principles, design and applications, Elsevier, New York, 1992.
76. Yue, Z.Q., Xiao, H.T. and Pan, E. Stress intensity factors of square crack inclined to interface of transversely isotropic bi-material, Engng. Anal. Boundary Elem., 31, 50-65, 2007.
77. Zhao, M.H., Fan, C.Y., Liu, T. and Yang, F. Extended displacement discontinuity Green’s functions for three-dimensional transversely isotropic magneto-electro-elastic media and applications, Engng. Anal. Boundary Elem., 31, 547-558, 2007.
78. Zhou, W., Lim, K.M., Lee, K.H. and Tay, A.A.O. A new variable-order singular boundary element for calculating stress intensity factors in three-dimensional elasticity problem, Int. J. Solids Struct., 42, 159-185, 2005.