| 研究生: |
李昀 Li, Yun |
|---|---|
| 論文名稱: |
在BCube雲端資料中心應用加權路由技術之擁塞控制演算法 WSPR: A Weighted Routing Algorithm for Congestion Control in BCube Cloud Data Centers |
| 指導教授: |
謝孫源
Hsieh, Sun-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 雲端資料中心 、擁塞控制 、軟體定義網路 |
| 外文關鍵詞: | Cloud Data Center Networks, Congestion Control, Software-Defined Networks |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著雲端服務的用戶數量和所需資源顯著增加,對於網路供應商來說,提供一個低延遲和低成本的強健網絡架構已經成為一個巨大的挑戰。在雲端資料中心網路的路由演算法中,擁塞控制是至關重要的課題之一。在本篇碩士論文中,我們提出了一種在BCube雲端資料中心中應用加權最短路徑之擁塞控制路由演算法WSPR。WSPR可以提前防止擁塞,從而充分利用空閒的網絡資源。我們選擇 BCube 作為我們的網絡模型並修改網絡拓撲,以使用軟體定義網絡的概念來獲得拓撲的完整概觀。首先,我們設計包含來源伺服器和目標伺服器之間所有最短路徑的SP圖。其次,使用本碩士論文提出的WSPR演算法為每個資料流分配最合適的路徑以達到擁塞控制。我們建構了一個模擬資料中心的系統,並將WSPR與其他經典方法進行比較評估。模擬實驗結果顯示在所有比較方法中,我們提出的WSPR演算法在最大延遲、平均延遲和吞吐量方面具有最佳性能。
Cloud services are experiencing a remarkable increase in the number of users and the resource required over the past few years. As a result, it has become a great challenge for the internet vendors to make a robust framework to serve the customers with low cost and delay. Congestion control is one of the essential topics of routing algorithms in cloud data center networks. In this thesis, we propose a weighted optimal scheduling algorithm WSPR for congestion control in cloud data center networks which prevents congestion in advance with the global view so that it can make good use of vacant network resources. We choose BCube as our network model and modify the network topology to fit software-defined networks so as to have a full view of the topology. First, we design the SP graph which contains all shortest paths between a source server and a destination server. Second, we propose WSPR to allocate the most appropriate path to each flow for congestion control. We implement a system to simulate a data center, and evaluate our proposed algorithm WSPR by comparing WSPR with other classical methods. The experimental results demonstrate that our proposed algorithm WSPR has the best performance in terms of the maximum delay, average delay, and throughput among all compared methods.
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center network architecture. SIGCOMM Comput. Commun. Rev., 38(4):63–74, August 2008.
[2] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, NSDI’10, page 19, USA, 2010. USENIX Association.
[3] Rasool Al-Saadi, Grenville Armitage, Jason But, and Philip Branch. A survey of delaybased and hybrid tcp congestion control algorithms. IEEE Communications Surveys Tutorials, 21(4):3609–3638, 2019.
[4] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. A tool for the generation of realistic network workload for emerging networking scenarios. Computer Networks, 56(15):3531–3547, 2012.
[5] Kai Chen, Chengchen Hu, Xin Zhang, Kai Zheng, Yan Chen, and Athanasios V. Vasilakos. Survey on routing in data centers: insights and future directions. IEEE Network, 25(4):6–10, 2011.
[6] J. Clement. Global data volume of consumer ip traffic 2017-2022. https://www.statista.com/statistics/267202/global-data-volume-of-consumer-iptraffic/, February 2020.
[7] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: A hybrid electrical/optical switch architecture for modular data centers. SIGCOMM Comput. Commun. Rev., 40(4):339–350, August 2010.
[8] Haitham Ghalwash and Chun-Hsi Huang. On sdn-based extreme-scale networks. In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 2016.
[9] Masoumeh Gholami and Behzad Akbari. Congestion control in software defined data center networks through flow rerouting. In 2015 23rd Iranian Conference on Electrical Engineering, pages 654–657, 2015.
[10] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, page 156–165, USA, 2005. Society for Industrial and Applied Mathematics.
[11] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: A scalable and flexible data center network. SIGCOMM Comput. Commun. Rev., 39(4):51–62, August 2009.
[12] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick McKeown, and Scott Shenker. Nox: Towards an operating system for networks. SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.
[13] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: A high performance, server-centric network architecture for modular data centers. SIGCOMM Comput. Commun. Rev., 39(4):63–74, August 2009.
[14] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu Lu. Dcell: A scalable and fault-tolerant network structure for data centers. volume 38, pages 75–86, 10 2008.
[15] Jianhua Hao, Yan Shi, Hongguang Sun, Min Sheng, and Jiandong Li. Rerouting based congestion control in data center networks. In 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pages 1–6, 2019.
[16] C. Hopps. Rfc2992: Analysis of an equal-cost multi-path algorithm, 2000.
[17] Renuga Kanagevlu and Khin Mi Mi Aung. Sdn controlled local re-routing to reduce congestion in cloud data center. In 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), pages 80–88, 2015.
[18] Saeed Khanagha, Shahzad (Shaz) Ansari, Sotirios Paroutis, and Luciano Oviedo. Mutualism and the dynamics of new platform creation: A study of cisco and fog computing. Strategic Management Journal.
[19] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid prototyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, New York, NY, USA, 2010. Association for Computing Machinery.
[20] Maciej Malawski, Adam Gajek, Adam Zima, Bartosz Balis, and Kamil Figiela. Serverless execution of scientific workflows: Experiments with hyperflow, aws lambda and google cloud functions. Future Generation Computer Systems, 110:502–514, 2020.
[21] Rahim Masoudi and Ali Ghaffari. Software defined networks: A survey. Journal of Network and Computer Applications, 67:1–25, 2016.
[22] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.
[23] Mohamed Nj, Shahrin Sahib, N. Suryana, and Burairah Hussin. Understanding network congestion effects on performance - articles review. 92:311–321, 10 2016.
[24] Stefano Sebastio, Kishor S. Trivedi, and Javier Alonso. Characterizing machines lifecycle in google data centers. Performance Evaluation, 126:39–63, 2018.
[25] Sharon Sunassee, Avinash Mungur, Sheeba Armoogum, and Sameerchand Pudaruth. A comprehensive review on congestion control techniques in networking. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pages 305–312, 2021.
[26] Bin Wang, Zhengwei Qi, Ruhui Ma, Haibing Guan, and Athanasios V. Vasilakos. A survey on data center networking for cloud computing. Computer Networks, 91:528–547, 2015.
[27] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki, T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. C-through: Part-time optics in data centers. SIGCOMM Comput. Commun. Rev., 40(4):327–338, August 2010.
校內:2026-08-11公開