簡易檢索 / 詳目顯示

研究生: 陳亮志
Chen, Liang-Zhi
論文名稱: (Co1-xZnx)Nb2O6陶瓷之微波介電特性與應用
Microwave Dielectric Properties and Applications of (Co1-xZnx)Nb2O6 Ceramics
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 微波低損介電陶瓷材料
外文關鍵詞: Microwave, Low loss, Dielectric ceramic
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且嘗試著調整共振頻率溫度飄移係數使其為零;第二部份將介紹其在被動元件之應用,並實作於不同基板上探討元件尺寸的改善。
    第一部份首先要介紹(Co1-xZnx)Nb2O6 (x = 0.02-0.10)陶瓷系統之微波介電特性。由實驗中可得知(Co0.95Zn0.05)Nb2O6 在1210°C燒結4小時可得到最佳之介電特性 εr~ 23.6,Q׃~ 110,000 (at 9 GHz),τf ~ –70 ppm/°C。由於此系統之τf為負值,我們添加具正值共振頻率溫度飄移係數的TiO2 (+420 ppm/°C)、探討共振頻率溫度飄移係數趨近零之最佳比例。
    第二部份我們設計及實作一操作在2.45 GHz的微帶線帶通濾波器,濾波器主要採用混和耦合的Hairpin結構做為主體,並使用凹槽來抑制二倍頻響應。最後,我們將此電路實作在FR4、氧化鋁和自製基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。

    There are two main subjects in this thesis. First, we will discuss the low loss dielectric material, and try to adjust temperature coefficient of resonant frequency near zero. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
    First, the microwave dielectric properties of (Co1-xZnx)Nb2O6(x = 0.02-0.10) ceramic system have been investigated. The experiment results show that (Co0.95Zn0.05)Nb2O6 ceramics has the best properties at sintering temperature 1210°C for 4 hours, which could reach the best dielectric properties εr~ 23.6 Q×f ~ 110,000 (at 9 GHz) and τf ~ –70 ppm/°C. Concerning about the negative value of τf, we choose adding the TiO2 (+420 ppm/°C) to adjust the value, then we could make temperature coefficient of resonant frequency near zero.
    Second, we design and fabricate a microstrip band-pass filter which resonator at 2.45 GHz. The filter was constructed by hairpin structure by using mix coupling. Finally, a square groove was added to suppress the spurious response. The pattern was printed on FR4, Al2O3 and 0.81(Co0.95Zn0.05)Nb2O6–0.19TiO2 substrates. By measured their frequency responses, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 介電材料原理 3 2-1 介電共振器(dielectric resonator,DR)原理 3 2-2 介電材料之微波特性 8 2-2-1 介電係數(dielectric constant,εr ) 8 2-2-2 品質因數(quality factor,Q) 12 2-2-3 共振頻率溫度飄移係數(Temperature Coefficient of Resonant Frequency,τf) 15 2-3 燒結原理 16 2-3-1 材料燒結之擴散方式 16 2-3-2 燒結的種類 17 2-3-3 燒結的過程 18 2-4 鈮鐵礦之結構 20 2-5 金紅石之結構 21 第三章 微帶線及濾波器原理 22 3-1 濾波器原理 22 3-1-1 濾波器簡介 22 3-1-2 濾波器之種類及其頻率響應 23 3-2 微帶線原理 27 3-2-1 微帶傳輸線簡介 27 3-2-2 微帶線的傳輸模態 27 3-2-3 微帶線各項參數公式計算及考量 28 3-2-4 微帶線的不連續效應 31 3-3 微帶線諧振器種類 39 3-3-1 λ/4短路微帶線共振器 39 3-3-2 λ/2開路微帶線共振器 40 3-4 共振器間的耦合形式 42 3-4-1 電場耦合: 42 3-4-2 磁場耦合: 47 3-4-3 混和耦合: 50 3-5 耦合係數法的應用 53 3-5-1 髮夾式帶通濾波器設計 54 3-5-2 利用電納斜率參數表示Hairpin濾波器 55 3-5-3 利用凹槽來抑制二倍頻響應 58 第四章 實驗程序與量測方法 59 4-1 微波介電材料的製備 59 4-1-1 起始粉末的配製與球磨 60 4-1-2 粉末的煆燒 60 4-1-3 加入黏劑、過篩 61 4-1-4 壓模成型、去黏劑及燒結 61 4-2 微波介電材料的量測與分析 61 4-2-1 密度測量 61 4-2-2 X-Ray分析 62 4-2-3 SEM、EDS分析 62 4-2-4 介電特性量測與分析 62 4-2-5 共振頻率溫度飄移係數之量測 69 4-3 濾波器的製作與量測 70 第五章 實驗結果與討論 72 5-1 (Co1-xZnx)Nb2O6之微波介電特性 73 5-1-1 (Co1-xZnx)Nb2O6之XRD分析結果 73 5-1-2 (Co1-xZnx)Nb2O6之SEM、EDS分析結果 75 5-1-3 (Co1-xZnx)Nb2O6之密度分析結果 84 5-1-4 (Co1-xZnx)Nb2O6之εr、Q×f、τf分析結果 85 5-2 (1–x)(Co0.95Zn0.05)Nb2O6–xTiO2之微波介電特性 88 5-2-1 (1–x)(Co0.95Zn0.05)Nb2O6–xTiO2之τf分析結果 88 5-2-2 (1–x)(Co0.95Zn0.05)Nb2O6–xTiO2之XRD分析結果 89 5-2-3 (1–x)(Co0.95Zn0.05)Nb2O6–xTiO2之SEM分析結果 90 5-2-4 (1–x)(Co0.95Zn0.05)Nb2O6–xTiO2之密度分析結果 97 5-2-5 (1–x)(Co0.95Zn0.05)Nb2O6–xTiO2之εr、Q×f分析結果 98 5-3 濾波器的模擬與實作 101 5-3-1 使用FR4(玻璃纖維基板)之模擬與實作結果 102 5-3-2 使用Al2O3之模擬與實作結果 104 5-3-3 使用自製基板之模擬與實作結果 106 第六章 結論 110 參考文獻 112

    [1] H. M. O’bryan, J. Thomson, and J. K. Plourde, “A New BaO–TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
    [2] G. Wolfram and H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
    [3] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
    [4] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment,” Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
    [5] C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
    [6] Y. C. Chen, S. M. Tsao, C. S. Lin, S. C. Wang, and Y. H. Chien, “Microwave Dielectric Properties of 0.95MgTiO3–0.05CaTiO3 for Application in Dielectric Resonator Antenna,” J. Alloys Compd., 471 [1–2] 347–351(2009).
    [7] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,”Acta. Cryst. A32 751–753(1976).
    [8] A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Cohen, and N. M. Alford, ‘‘Microwave Dielectric Loss of Titanium Oxide,’’ J. Am. Ceram. Soc., 83[1] 95–100 (2000)
    [9] R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 391–398 (1939)
    [10] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
    [11] D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
    [12] D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616(1984).
    [13] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
    [14] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
    [15] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), 陶瓷材料概論, 曉園出版社, (1988)
    [16] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [17] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
    [18] R.M. German, P. Suri and S.J. Park, Review “liquid phase sintering”, J. Mater. Sci. 1–39 [44] (2009)
    [19] W. J. Huppmann and G. Petzow, Sintering Processes, Plenum Press, (1979).
    [20] R. M. German, Liquid Phase Sintering, Plenum Press, (1985).
    [21] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
    [22] D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
    [23] D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616(1984)
    [24] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
    [25] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
    [26] 吳朗, 電工材料, 滄海書局, (1998).
    [27] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
    [28] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [29] G.Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
    [30] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
    [31] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Second Edition, Artech House, (1996).
    [32] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
    [33] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
    [34] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
    [35] E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
    [36] Y. Di, P. Gardner, P. S. Hall, and H. Ghafouri-Shiraz,”Multiple-Coupled Microstrip Hairpin-Resonator Filter,” IEEE Microwave Wireless Components Lett.,.13, [37] 532-534, (2003)
    [38] J. S. Wong,”Microstrip Tapped-Line Filter Design,” IEEE Trans. Microwave Theory Tech., 27, 44-50, (1979)
    [39] S. Ohshima, T. Tomiyama, T. Kimpara and T. Sato,” Design and Fabrication of Superconducting Compact Filters,” Asia Microwave Conference,3, 821-824, (1999)
    [40] B. S. Kim, J. W. Lee, and M. S. Song, “An implementation of harmonic suppression microstrip filters with periodic grooves,” IEEE Microwave Wireless Lett., 14, [9], 413-415,( 2004).
    [41] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [42] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [43] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [44] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [45] M.Maeda, T. Yamamura, and T. Ikeda, ‘‘Dielectric Characteristics of Several Complex Oxide Ceramics at Microwave Frequencies,’’ Jpn. J. Appl. Phys. Pt. 1,26-2 [Suppl.] 76–9 (1987).
    [46] H.-J. Lee, K.-S. Hong, S.-J. Kim, and I.-T. Kim, ‘‘Dielectric Properties of MNb2O6 Compounds (Where M=Ca, Mn, Co, Ni or Zn),’’ Mater. Res. Bull., 32 [7] 847–55 (1997).
    [47] R. C. Pullar, J. D. Breeze, and N. McN. Alford, ‘‘Characterization and Microwave Dielectric Properties of M2+Nb2O6 Ceramics,’’ J. Am. Ceram. Soc., 88, 2466–71 (2005).
    [48] A. Belous, O. Ovchar, B. Jancar, and J. Bezjak, ‘‘The Effect of Non stoic hiometry on the Microstructure and Microwave Dielectric Properties of the Columbites A2+Nb2O6 ,’’ J. Eur. Ceram. Soc., 27, 2933–6 (2007).

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE