簡易檢索 / 詳目顯示

研究生: 蔡壄川
Tsai, Yea-Chuan
論文名稱: 水聲計在底床輸砂率監測中的應用
Application of hydrophone on bed-load transport rate monitoring
指導教授: 謝正倫
Shieh, Chjeng-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 54
中文關鍵詞: 日本管式水聲計底床載輸砂率
外文關鍵詞: Japanese pipe hydrophone, Bed-load transport rate
相關次數: 點閱:85下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球暖化所造成的極端氣候出現的頻率越來越高,長延時且高強度的降雨事件更是一年多過一年,極端降雨事件使得土砂相關災害每年都對台灣造成大量的損失。如何有效且準確的監測土砂的運移,將會是在治理及預防土砂相關災害時非常重要的一環。
    目前台灣政府在計算或推估輸砂量時,主要使用兩種方式,一是使用經驗公式;二是使用樣本法。但此兩種方法均有不足,其中,經驗公式的結果極為容易高估輸砂量,採取水樣又會因為天氣因素導致人員的風險,因此如何準確的、非直接的取得泥沙監測的數據就成為一個值得研究的問題。
    為了估算底床載輸沙率,本研究使用日本管式水聲計進行量測。通過實驗和統計方法確定音壓與動量之間的關係以及平均水流速度與粒子速度之間的關係。並利用此關係建立了一種估算泥砂質量的方式。

    In recent years, the frequency of extreme weather under global warming has become higher and higher. Long-duration and high-intensity rainfall events occur more frequently.Environmental factors, such as steep terrain, high speed of river flow, fragile geology and extreme rainfall, have made sediment related disasters commonly and caused a lot of losses and casualties in Taiwan. Therefor, how to effectively and accurately monitor the movement of sediment will be a very important part in the management and prevention of sediment-related disasters.
    At present, the Taiwan government mainly used two methods to estimate the sediment transport rate. One is that the sediment transport rate is estimated by using an empirical formula; the other is that the sediment transport rate is estimated by samples from the river-bed. But these methods are inadequate. The results of the empirical formula are easy to overestimate the rate of sediment transport, and the sampling work is high risk for staff due to severe weather. Therefore, a new monitoring method to indirectly obtain the data of sediment becomes a worth study.
    In order to estimate the bed-load transport rate, the study used a Japanese pipe hydrophone to measure. The relationship between sound pressure and momentum and the relationship between average water flow velocity and particle velocity are determined experimentally and statistically. And using this relationship, a method for estimating the quality of sediment has been established in this study.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VI List of Figures VII List of symbols IX Chapter1. Introduction 1 1.1 Research motivation 1 1.2 Research purposes 3 1.3 Research Process 4 Chapter2. Literature Review 6 2.1 Basic theory of hydrophone 6 2.2 Hydrophone development and evolution 9 2.3 Bed load transport formula 16 Chapter 3. Research methods 22 3.1 The relationship between sound pressure and momentum 22 3.2 The relationship between water flow velocity and particle velocity 23 Chapter 4. Laboratory experiments 24 4.1 Experiment on the relationship between sound pressure and momentum in the air 24 4.1.1 Experimental purpose 24 4.1.2 Experimental configuration and conditions 25 4.1.3 Experimental process and results 29 4.2 Experiment on the relationship between sound pressure and momentum in the channel 33 4.2.1 Experimental purpose 34 4.2.2 Experimental configuration and conditions 34 4.2.3 Experimental process and results 37 4.3 Experiment on the relationship between average water flow velocity and particle velocity 40 4.3.1 Experimental purpose 42 4.3.2 Experimental configuration and conditions 42 4.3.3 Experimental process and results 43 Chapter5. Results and discussion 45 5.1 The relationship between sound pressure and momentum in the air 45 5.2 The relationship between sound pressure and momentum in the channel 46 5.3 Particle velocity calculation 47 5.4 Particle mass estimation 48 Chapter6. Conclusion and suggestion 49 References 50

    1. Ashida, K., & Michiue, M. (1972, October). Study on hydraulic resistance and bed-load transport rate in alluvial streams. Proceedings of the Japan Society of Civil Engineers (Vol. 1972, No. 206, pp. 59-69).
    2. Bunte, K., Swingle, K. W., & Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: construction, installation, operation, and sample processing (Vol. 191). US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
    3. Claude, N., Rodrigues, S., Bustillo, V., Breheret, J.G., Macaire, J.J., and Juge, P., (2012). “Estimating bedload transport in a large sand–gravel bed river from direct sampling, dune tracking and empirical formulas.” Geomorphology, 179, 40-57.
    4. Dell'Agnese, A., Mao, L., & Comiti, F. (2014). Calibration of an acoustic pipe sensor through bedload traps in a glacierized basin. Catena, 121, 222-231.
    5. Egozi, R., & Ashmore, P. (2009). Experimental analysis of braided channel pattern response to increased discharge. Journal of Geophysical Research: Earth Surface, 114(F2).
    6. Emmett, W. W. (2010). Observations of bedload behavior in rivers and their implications for indirect methods of bedload measurement. US Geological Survey Scientific Investigations Report, 5091, 159-170.
    7. Gao, P. (2011). An equation for bed-load transport capacities in gravel-bed rivers. Journal of hydrology, 402(3-4), 297-305.
    8. Goto, K., Itoh, T., Nagayama, T., Kasai, M., & Marutani, T. Influences of boundary condition of pipe on acoustic wave deformation. Journal of the Japan Society of Erosion Control Engineering
    9. Goto, K., Itoh, T., Nagayama, T., Kasai, M., & Marutani, T. (2014). Experimental
    and theoretical tools for estimating bedload transport using a Japanese pipe hydrophone. International Journal of Erosion Control Engineering, 7(4), 101-110.
    10. Gray, J. R., Laronne, J. B., & Marr, J. D. (2010). Bedload-surrogate monitoring technologies (No. 2010-5091). US Geological Survey.
    11. Itoh, T., Gotoh, K., Utsunomiya, R., Nonaka, M., Nagayama, T., Tsutsumi, D., & Mizuyama, T. (2014, November). Experimental studies for monitoring of bedload using Various sensors. In Proceedings of International Symposium in Pacific Rim, Interpraevent held in Nara, Japan (pp. 25-28).
    12. Koshiba, T., Sumi, T., Takemon, Y., & Tsutsumi, D. (2015). Flume Experiment on Bedload Measurement with a Plate Microphone.
    13. Mao, L., Dell'Agnese, A., Huincache, C., Penna, D., Engel, M., Niedrist, G., & Comiti, F. (2014). Bedload hysteresis in a glacier‐fed mountain river. Earth Surface Processes and Landforms, 39(7), 964-976.
    14. Mao, L., Carrillo, R., Escauriaza, C., & Iroume, A. (2016). Flume and field-based calibration of surrogate sensors for monitoring bedload transport. Geomorphology, 253, 10-21.
    15. Marineau, M., Minear, J. T., & Wright, S. A. (2015). Using hydrophones as a surrogate monitoring technique to detect temporal and spatial variability in bedload transport. In 3rd Joint Federal Interagency Conference.
    16. Mizuyama, T., Nonaka, M., & Nonaka, N. (1996). Observation of sediment discharge rate using a hydrophone. J. Jap. Soc. of Erosion Control Eng, 49(4), 34-37.
    17. Mizuyama, T., Matsuoka, M., & Nonaka, M. (2008). Bedload measurement by acoustic energy with Hydrophone for high sediment transport rate. Journal of the Japan Society of Erosion Control Engineering, 61(1), 35-38.
    18. Mizuyama, T., Satofuka, Y., Laronne, J., Nonaka, M., & Matsuoka, M.
    (2008). Monitoring sediment transport in mountain torrents. na.
    19. Mizuyama, T., Laronne, J. B., Nonaka, M., Sawada, T., Satofuka, Y., Matsuoka, M., & Yamaguchi, S. (2010). Calibration of a passive acoustic bedload monitoring system in Japanese mountain rivers. US Geological Survey Scientific Investigations Report, 5091, 296-318.
    20. Mizuyama, T., Oda, A., Laronne, J. B., Nonaka, M., & Matsuoka, M. (2010). Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload. US Geological Survey Scientific Investigations Report, 5091, 319-335.
    21. Mizuyama, T., Hirasawa, R., Kosugi, K. I., Tsutsumi, D., & Nonaka, M. (2011). Sediment monitoring with a hydrophone in mountain torrents. International Journal of Erosion Control Engineering, 4(2), 43-47.
    22. Møen, K. M., Bogen, J., Zuta, J. F., Ade, P. K., & Esbensen, K. (2010). Bedload measurement in rivers using passive acoustic sensors. US Geological Survey Scientific Investigations Report, 5091, 336-351.
    23. Nakaya, H. (2008). A case study of influences on the bed load detection rate of hydrophone system exerted by flow discharges. Journal of the Japan Society of Erosion Control Engineering, 61(4).
    24. Sawai, K. (1990). Techniques for sediment discharge measurement in laboratories.
    25. Shrestha, S. M., Shibata, K., Hirano, K., Takahara, T., & Matsumura, K. River Bedload Monitoring Using a Radar System.
    26. Tsutsumi, D., Higashi, Y., Nonaka, M., & Fujita, M., (2017). Bedload monitoring in a mountain stream : Method for improving the accuracy of the calibration relationship between acoustic pulses and bedload discharge.
    27. Uchida, T., Okamoto, A., Hayashi, S., Suzuki, T., Fukumoto, A., Yamashita, S., & Tagata, S. (2013). Hydrophone observations of bedload transport in mountainous rivers of Japan. In Proc. of the 12th ISRS symposium (Advances in River Sediment Research) (pp. 1749-1756).
    28. Yamashita, S., & Tagata, S. Possibility of early warning for large-scale landslides using hydrological and sediment transport observations in mountain rivers.
    29. 谷口伸一, 板倉安正. (1992). 音響法による流砂量計測のための信号解析 (蜷
    木實教授追悼号).
    30. 堤大三, 平澤良輔, 水山高久, 志田正雄, 藤田正治. (2010). 山地流域における音響法を用いた流砂量観測, 京大防災研年報, 第 53 号 B.
    31. 堤大三, 野中理伸, 水山高久, 志田正雄, 市田児太朗, 宮田秀介, 藤田正治.
    (2013). 山地流域における定量的な掃流砂量計測.
    32. 天野唯子, 吉田一雄, 野中理伸, 伊藤隆郭, 水山高久. (2016). ハイドロフォンに用いるパイプの厚さに関する検討. 砂防学会誌, 68(5), 43-49.
    33. 劉建榮, 許少華, 蘇宏仁. (2011). 陡坡卵礫石小型河川底床推移載之現場量測與經驗公式之比較: 以筏子溪為案例.
    34. 鈴木拓郎, 水野秀明, 小山内信智, 平澤良輔, 長谷川祐治. (2010). 音圧データを用いたハイドロフォンによる掃流砂量計測手法に関する基礎的研究. 砂防学会誌, 62(5), 18-26.
    35. 栗原淳一, 宮本邦明. (1992). 音響を利用した流砂量計測装置について. 砂防学会誌, 44(5), 26-31.
    36. 髙木強治, 吉永育生, 島崎昌彦, 常住直人. (2016). パイプ型ハイドロフォンの露出幅と砂礫の捕捉率. 農業農村工学会論文集, 84(3), IV_9-IV_10.
    37. 關根正人. (2004). 動床水力學, 中華防災學會出版委員會.
    38. 清水康行, 中津川誠, 荒井信行. (1988). 現 場 の た め の 水 理 学. 北海道 開 発 局 土 木 試 験 所 河 川 研 究 室, 38.

    39. 謝孟荃, 黃宏斌. (2007). 混合粒徑輸砂量估算之研究. 中華水土保持學報.
    40. 行政院農業委員會水土保持局. (2018). 集水區河道土砂流出量觀測系統設置及研究.
    41. 星野和彦, 酒井哲也, 水山高久, 里深好文, 小杉賢一朗, 山下伸太郎, 野中理伸. (2004). 流砂等計測システム (六甲住吉型) と観測事例. 砂防学会誌, 56(6),
    27-32.
    42. 詹錢登. (2018). 泥沙運行學, 五南圖書出版公司
    43. 程運達. (2009). 河砂運移及量測技術之研究
    44. 日本工營株式會社. (2012). 信濃川下流砂防総合土砂管理業務.
    45. 日本工營株式會社. (2016). 常願寺川土砂移動モニタリング調査業務.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE