| 研究生: |
張凱棋 Chang, Kai-Chi |
|---|---|
| 論文名稱: |
單週期控制之功率因數校正晶片設計 Design of One-Cycle Control Power Factor Correction IC |
| 指導教授: |
梁從主
Liang, Tsorng-Juu 劉濱達 Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 單週期控制 、功率因數校正 |
| 外文關鍵詞: | Power factor correction, One-cycle control |
| 相關次數: | 點閱:84 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計一個應用於電源轉換器前級的功率因數校正晶片,採用單週期控制法則,因為僅需回授輸入電流以及輸出電壓做控制,不使用乘法器,具有設計簡單之優點。傳統電源功率因數校正晶片,需使用乘法器將輸入電壓與輸出電壓做一連接,因此功率因數校正效果,容易受到乘法器準確度的影響。在本晶片當中,透過單週期控制的重置積分器的運算,可以準確的控制開關責任週期,減少總諧波失真,並且加入一電壓準位位移電路,使晶片適用於單輸入操作電壓。為了達到更好的效能,前沿遮蔽電路以及過電壓保護,將整合於所提出的晶片中。本晶片使用0.35μm 2P4M 3.3V/5V 混合訊號互補式金氧半製程來製作。
A one-cycle control based trailing-edge boost type power factor correction IC with instant-switch-current control is proposed in this thesis. It can be utilized to control the front stage of power converter. This control IC is easy to use because only two feedback signals are needed. One is input current and another is output voltage. Multiplier is excluded in this chip. In conventional PFC control chip, the input voltage and load demand are related by using a multiplier. The performance of power factor correction is highly dependent on the precision of multiplier. By using the integrator with reset proposed in one cycle control, the duty ratio can be precisely controlled to lower the total harmonic distortion. Moreover, a level shift circuit is adopted to make this chip work with unipolar supply voltage. For the purpose of better performance, the functions such as leading edge blanking (LEB) and over voltage protection (OVP) are also integrated into the proposed chip. This chip is fabricated with 0.35μm 2P4M 3.3V/5V Mixed Signal CMOS Process.
[1] R. Redl, “Power electronics and electromagnetic compatibility,” Proc. of IEEE Power Electronics Specialists Conference, PESC’96, pp. 15-21, June 1996.
[2] IEC 555-2: “Disturbances in supply systems caused by household appliances and similar electrical equipment – Part 2: Harmonics”, IEC, 1982.
[3] IEC 1000-3-2 (1995-3) Ed. 1: “Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤16A per phase),” IEC, 1995.
[4] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics, John Wiley & Sons, Inc., 2003.
[5] V. Vorperian and R. B. Ridley, “A simple scheme for unity power-factor rectification for high frequency AC buses,” IEEE Transactions on Power Electronics, vol. 5, no. 1, pp. 77-87, Jan. 1990.
[6] M. J. Kocher and R. L. Steigerwald, “An AC-to-DC converter with high quality input waveforms,” IEEE Transactions on Industry Applications, vol. IA-19, no. 4, pp. 586-599, July 1983.
[7] R. W. Erickson and D. Maksimovic, Fundamental of Power Electronics, 2nd ed., Kluwer Academic Pub., 2001.
[8] R. Redl and B. Erisman, “Reducing distortion in peak-current-controlled boost power factor correctors,” IEEE Applied Power Electronics Conference, pp. 576-583, Feb. 1994.
[9] C Zhou and M. Jovanovic, “Design tradeoffs in continuous current-mode controlled boost power factor correction circuits,” High Frequency Power Conversion Conference, pp. 209-220, May 1992.
[10] R. Mammano and R. Neidorff, “Improving input power factor – a new active controller simplifies the task,” Power Conversion, pp. 100-109, Oct. 1989.
[11] C. Zhou, R. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” IEEE Power Electronics Specialists Conference, pp. 800-807, June 1990.
[12] J. Lai and D. Chen, “Design considerations for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” IEEE Applied Power Electronics Conference, pp. 267-273, Mar. 1993.
[13] K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Transactions on Power Electronics, vol. 10,no. 6, pp. 625-633, Nov. 1995.
[14] Z. Lai and K. M. Smedley, “A new extension of one-cycle control and its application to switching power amplifiers” IEEE Transaction on Power Electronics, vol. 11, no. 1, pp. 99-105, Jan. 1996.
[15] B. Arbetter and D. Maksimovic, “Feed-forward pulse-width modulators for switching power converters” Power Electronics Specialists Conference, pp. 601-607, June 1995.
[16] D. Maksimovic, Y. Jang and R. Erickson, “Nonlinear-carrier control for high power factor boost rectifiers,” IEEE Applied Power Electronics Conference, pp. 635-641, Mar. 1995.
[17] Z. Lai and K. M. Smedley, “A general constant-frequency pulsewidth modulator and its applications,” IEEE Transactions on Circuits and Systems, vol. 45,no. 4, pp. 386-396, Apr. 1998.
[18] Z. Lai and K. M. Smedley, “A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator” IEEE Transactions on Power Electronics, vol. 13, no. 3, pp. 501-510, May 1998.
[19] D. Ma, W. H. Ki, and C. Y. Tsui, “An integrated one-cycle control buck converter with adaptive output and dual loops for output error correction,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, Jan. 2004.
[20] D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997.
[21] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS: Circuit Design, Layout, and Simulation, IEEE Press, 1998.
[22] A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford University Press, 2004.
[23] R. Gregorain, Introduction to CMOS OP-Amps and Comparators, John Wiley & Sons, 1999.
[24] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526-529, Apr. 2002.
[25] K. N. Leung and P. K. T. Mok, “Design considerations of recent advanced low-voltage low-temperature-coefficient CMOS bandgap voltage reference,” IEEE Custom Integrated Circuits Conference, pp. 635-642, Oct. 2004.
[26] “Technical review of low dropout voltage regulator operation and performance,” Texas Instruments Inc., Application Report SLVA-072, Aug. 1999.
[27] S. K. Lau, K. N. Leung, and P. K. T. Mok, “Analysis of low-dropout regulator topologies for low-voltage regulation,” IEEE Conference on Electron Devices and Solid-State Circuits, pp. 379-382, Dec. 2003.
[28] “UCC3813 Low power economy BiCMOS current mode pwm,” Texas Instruments Inc., Datasheet SLUS-161A, Jan. 2005.
[29] “UCC 3800/1/2/3/4/5 BiCMOS current mode control ICs,” Texas Instruments Inc., Application Note U-133A, 1999.
[30] R. S. Sandige, Digital Design Essentials, Prentice-Hall, 2001.