簡易檢索 / 詳目顯示

研究生: 柯貝曼
Prahmana, Rico Aditia
論文名稱: 利用浮動式光達分析颱風風況
Analysis on Wind Characteristics of Typhoons by using Floating LiDAR
指導教授: 林大惠
Lin, Ta-Hui
共同指導教授: 吳毓庭
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 70
中文關鍵詞: 浮動式光達 (LiDAR)颱風風速風向紊流強度
外文關鍵詞: Floating light detection and ranging (LiDAR), typhoon, wind speed, wind direction, turbulence intensity.
相關次數: 點閱:163下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於台灣每年都會被數個颱風所侵襲,因此颱風侵襲台灣的過程,其風速、風向與紊流強度等,均會有相當大的變化。為了確保風力發電機在颱風期間的安全性,則是必須先了解颱風可能造成的風況。本研究主要是利用浮動式光達(LiDAR)量測蘇利颱風 (2013年7月)、潭美颱風 (2013年7月) 和麥德姆颱風 (2014年8月)的風速、風向與紊流強度,並且與中央氣象局或各區域之氣象站(台北、台中、苗栗跟高雄)的數據進行比較。
    結果顯示浮動式光達 (LiDAR) 在量測蘇利、潭美和麥德姆颱風侵襲台灣時,在200公尺高層中所測得的最大風速分別為24、28和27 m/s。然而在這相同的時間點,由中央氣象局的資料顯示,颱風中心最大風速分別為38、30、和 38 m/s。此風速的差異性應該是浮動式光達 (LiDAR)所量測的位置並未在颱風中心的原因所導致。
    蘇利颱風期間的風速比平常日的風速還要高,所以颱風期間的紊流強度會比平常日還低。潭美和麥德姆颱風期間的平均風速顯示,由於200公尺高層的風速高於55 和 110 公尺高層,因此200公尺高層的紊流強度會較低。此外,因為颱風由東向西移動並且逆時針旋轉,所以風向會由北風轉為南風。而且在颱風天的紊流強度也會低於一般正常日。最後,期待在此研究中所有測量方式的呈現,能讓台灣和全世界風力產業的風機設計人員感到有興趣。

    Taiwan generally experiences several typhoons every year. To ensure the safety of wind turbines used for power generation, it is important that the wind conditions in a typical typhoon are known in advance. Accordingly, the present study uses the data of the floating light detection and ranging (LiDAR) system in Tainan and Miaoli, and meteorological stations in Taipei, Taichung, and Kaohsiung to observe and measure the wind speed and wind direction during Typhoon Soulik in July 2013, Typhoon Trami in August 2013, and Typhoon Matmo in August 2014. The wind data are used to calculate the corresponding turbulence intensity.
    The results show that the maximum wind speeds for typhoons Soulik, Trami, and Matmo reached 24, 28, and 27 m/s, respectively, as measured from floating LiDAR at a height of 200 m. At same time the maximum wind speed announced by Central Weather Bureau (CWB) for typhoons Soulik, Trami, and Matmo near at the center of typhoons reached 38, 30, and 38 m/s, respectively. The different between wind speed measured by Floating LiDAR and CWB because the different location of typhoon measurement.
    Moreover, for a typhoon moving from east to west, the wind direction changes from northward to southward as a result of the counterclockwise rotation of the typhoon. Furthermore, the turbulence intensity on typhoon days was lower than that on normal days. Finally, it is expected that the measurement methods presented in this study will be of interest to wind turbine designers in Taiwan in particular and around the world in general.

    ABSTRACT I ACKNOWLEDGEMENTS III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES XI 1. INTRODUCTION 1 2. LITERATURE REVIEW 4 2.1 Typhoons in western North Pacific 4 2.1.1 Classification of typhoon strength 5 2.1.2 Naming and numbering of typhoons 6 2.2 Topography in Taiwan 7 2.3 Extreme wind speed 8 2.4 Wind speed without topographic effect 10 2.5 Wind speed with topographic effect 11 2.6 Turbulence intensity 12 3. EXPERIMENTAL APPARATUS AND RESEARCH METHOD 13 3.1 Overview 13 3.1.1 WindSentinel floating LiDAR 13 3.1.1.1 Working principle 14 3.1.1.2 Specification of floating LiDAR 16 3.1.2 Meteorological stations 18 3.1.2.1 Taipei MET 18 3.1.2.2 Hsinchu MET 19 3.1.2.3 Taichung MET 20 3.1.2.4 Kaohsiung MET 21 3.1.3 MET instruments 22 3.1.3.1 Wind cup and propeller anemometer 22 3.1.2.2 Wind vane 22 3.1.2.3 Humidity sensor 23 3.1.2.4 Precipitation sensor 23 3.1.2.5 Pressure sensor 24 3.1.2.6 Temperature sensor 25 3.2 Research method 26 3.2.1 WindSentinel floating LiDAR 26 3.2.1.1 SmartWeb 26 3.2.1.2 Compact Flash card 26 3.2.2 CWB METs 27 3.2.2.1 Typhoons data 27 3.2.2.2 Monitoring of typhoons 27 4. ANALYSIS OF TYPHOONS SOULIK, TRAMI, AND MATMO 28 4.1 Typhoon Soulik 28 4.1.1 Typhoon Soulik track 28 4.1.2 Location of floating LiDAR 30 4.1.3 Typhoon data analysis 30 4.1.3.1 Wind speed and direction 30 4.1.3.2 Turbulence intensity 32 4.1.3.3 Comparison of wind speed and direction between normal and typhoon days 32 4.1.3.4 Comparison of turbulence intensity between normal and typhoon days 33 4.1.3.5 Comparison of temperature, average humidity, and pressure between normal and typhoon days 33 4.2 Typhoon Trami 40 4.2.1 Typhoon Trami track 40 4.2.2 Location of floating LiDAR 42 4.2.3 Typhoon data analysis 42 4.2.3.1 Wind speed and direction 42 4.2.3.2 Turbulence intensity 43 4.2.3.3 Temperature, average humidity, and pressure 43 4.3 Typhoon Matmo 49 4.3.1 Typhoon Matmo track 49 4.3.2 Location of WindSentinel 51 4.3.3 Typhoon data analysis 51 4.3.3.1 Wind speed and direction 51 4.3.3.2 Turbulence intensity 52 4.3.3.3 Temperature, average humidity, and pressure 52 5. CONCLUSION 58 6. REFERENCES 60 LIST OF PUBLICATIONS 67 APPENDIX 68

    1. Jaynes, D. W., McGowan, J. G., Rogers, A. L., and Manwell, J. F., “Validation of Doppler LIDAR for Wind Resource Assessment Applications,” AWEA Windpower Conference, Los Angeles, CA, 2007.
    2. Standridge, C. R., Zeitler, D., Nordman, E., Boezaart, T. A., Edmonson, J., Nieves, Y., Turnage, T. J., Phillips, R., Howe, G., Meadows, G., Cotel, A., Marsik, F., and Desai, N., "Laser Wind Sensor Performance Validation with an Existing Gage," Grand Valley State University , Scholarworks@gvsu, 2013.
    3. Weissmann, M., Langland, R. H., Cardinali, C., Pauley, P. M., and Rahm, S.,“Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Quart J Roy Meteor Soc., Vol. 138, p. 118-130, 2012.
    4. Chan, P. W., and Lee, Y. F., “Performance of LIDAR- and radar-based turbulence intensity,” Appl. Phys & Eng, Vol. 14, p. 469-481, 2013.
    5. Brand, S., and Blelloch, J. W., “Changes in the characteristic of typhoons crossing the island of Taiwan,” Mon. Wea. Rev., Vol. 102, p.708-713, 1974.
    6. Chih, W. H., “A 300-Year Typhoon Record in Taiwan and the Relationship with Solar Activity,” Terr. Atmos. Ocean. Sci., Vol. 24, p. 737-743, 2013.
    7. Terry, J. P., and Chen, C. F., “On quantifying the sinuosity of typhoon tracks in the western North,” Appl. Geogr., Vol. 30, p.678–686, 2010.
    8. Jang, J. J., and Chien, C. W., “Damage Caused by Typhoon and Design of Wind Turbine Towers,” ISOPE, p. 651-658, 2010.
    9. Ho, C. H., Baik, J. J., Kim, J. H., and Gong, D. Y.,“Interdecadal Changes in Summertime Typhoon Tracks,” J. Climate, Vol. 17, p.1767- 1776, 2004.
    10. Central Weather Bureau (CWB), http://www.cwb.gov.tw/eng/index.htm
    11. Fang, X., Kuo, Y. H., and Wang, A., “The Impacts of Taiwan Topography on the Predictability of Typhoon Morakot’s Record-Breaking Rainfall: A High-Resolution Ensemble Simulation,” Amer. Meteor. Soc., Vol. 26, p.613-633, 2011.
    12. Chien, F. C., and Kuo,Y. H., “Topographic Effects on a Wintertime Cold Front in Taiwan,” Amer. Meteor. Soc., Vol. 134, p. 3297-3316, 2006.
    13. Chang, C. P., Yeh, T. C., and Chen, J. M., “Effects terrain on the surface structure of typhoons over Taiwan,” Mon. Wea. Rev., Vol. 121, p. 734-752, 1992.
    14. Robert, F., Monahan, H. M., and William, J. M., “At What Time of Day Do Daily Extreme Near-Surface Wind Speeds Occur?,” J. Climate, Vol. 27, p. 4226-4244, 2014.
    15. An, Y., and Pandey, M. D., “A comparison of methods of extreme wind speed estimation,” J. Wind Eng. Ind. Aerodyn., Vol. 93, p. 535-545, 2005.
    16. Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S., and Højstrup, J., “Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms,” Wind Energy, Vol. 9, p. 39-53, 2006.
    17. WindPRO online help, “WindPRO 2.9 User Manual,”
    http://help.emd.dk/knowledgebase/. Accessed 2014.

    18. Troen, I., “A High Resolution Spectral Model for Flow in Complex Terrain,” file:///C:/Users/compaq/Downloads/A%20high%20resolution%20spectral%20model%20for%20flow%20in%20complex%20terrain.pdf.Accessed on October 2014.
    19. AXYS Technologies.inc “WindSentinel Floating LiDAR Sensor Performance Update,” http://axystechnologies.com/library/technical-papers/. Accessed on October 2014.
    20. Chang, P. P., Hung, J. B., Hsu, W. Y., and Lin, T. H.,” Performance Test report floating LiDAR,” Taiwan Wind Energy Associations, G6-04, 2013.
    21. National Oceanic and Atmospheric Administration (NOAA) “Anemometer,” http://www.erh.noaa.gov/mhx/tour/OfficeTourAnemometer.php.Accessed on December 2014.
    22. Wikipedia “Typhoon Soulik (2013),”
    http://en. wikipedia.org/wiki/Typhoon_ SOULIK. Accessed on November 2014.
    23. Bushman's Typhoon Blog “Typhoons Soulik, Trami and Matmo,” http://thenhbushmantyphoon.blogspot.tw/. Accessed on November 2014.
    24. Wikipedia “Typhoon Trami (2013),”
    http://en.wikipedia.org/wiki/Tropical_Storm_Trami_(2013). Accessed on November 2014.
    25. Wikipedia “Typhoon Matmo (2014),”
    http://en.wikipedia.org/wiki/Typhoon_Matmo_%282014%29. Accessed on Desember 2014.
    26. Barthelmie, R. J., Folkerts, L., Larsen, G. C., Rados, K., Pryor, S. C., and Frandsen, S. T., “Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar,” J. Atmos. Ocean Technol., Vol. 23, p. 888-901, 2006.
    27. AXYS Technologies.inc “WindSentinel Manual Book,” Canada 2013.
    28. Wikipedia “Anemometer,”
    http://en.wikipedia.org/wiki/Anemometer#Cup_anemometers. Accessed on October 2014.
    29. Central Weather Bureau (CWB) “Weather Data,”
    http://www.cwb.gov.tw/V7e/climate/30day/30day.htm
    30. Bao, C. L., and Sadler, J. C., “the speed of recurving typhoons over the WNP ocean,” Mon. Wea. Rev., Vol. 111, p. 1280-1292, 1983.
    31. Kovacs, T. H., and McCormick, M. P., “Observations of Typhoon Melissa during the Lidar In-Space,” Amer. Meteor. Soc, Vol. 42, p. 1003-1013, 2003.
    32. Wang, L., and Wang, Q., “Wind Structures of monsoon wind and typhoons near the ground,” AJCE (Building and Housing), Vol.9, No.3, 2008.
    33. Corbosiero, K. L., and Molinari, J., “The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones,” Amer. Meteor. Soc., Vol. 130, p. 2110-2123, 2002.
    34. Weissmann, M., Busen, R., Dornbrack A., Rahm, S., and Reitebuch, O., “Targeted Observations with an Airborne Wind Lidar,” J. Atmos. Ocean. Technol., Vol. 22, p. 1706-1719, 2005.
    35. Wang, G. C. Y., “Sea-level pressure profile and gust within a typhoon circulation,” Mon. Wea. Rev., Vol. 106, p. 954-960, 1978.
    36. Riehl, H., “On the formation of Typhoon,” J. Meteor., Vol. 5, p. 247-264, 1948.
    37. Weissmann, M., Harnisch F., Wu, C. C., Lin, P. P., Ohta, Y., Yamashita, K., Kim, Y. H., Jeon, E. H., Nakazawa, T., and Aberson, S., “The Influence of Assimilating Dropsonde Data on Typhoon Track and Midlatitude Forecasts,” Amer. Meteor. Soc., Vol. 139, p. 908-920, 2010.
    38. Durden, S. L., “Trends in Intense Typhoon Minimum Sea Level Pressure” Atmo., Vol. 3, p.124-13, 2012.
    39. Wang, C. C., Chen, G. T. J., Chen, T. C., and Tsuboki, K., “A Numerical Study on the Effects of Taiwan Topography on a Convective Line during the Mei-Yu Season,” Amer. Meteor. Soc., Vol.133, p.3217-3242, 2005.
    40. Cao, S., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I., and Matsuzaki, Y., “Wind characteristics of a strong typhoon,” J. Wind Eng. Ind. Aerodyn., Vol.97, p.11-21, 2009.
    41. Xie, B., And Zhang, F., “Impacts of Typhoon Track and Island Topography on the Heavy Rainfalls in Taiwan Associated with Morakot (2009),” Amer. Meteor. Soc., Vol.140, p. 3379-3394, 2012.
    42. Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry, B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma, Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P., Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G., “LiDAR-Measured Wind Profiles the missing link in the global observing system,” Amer. Meteor. Soc., p. 543-564, 2014.
    43. Hundecha, Y., Hilarie, A. S., Ouarda, T. B. M. J., and Adlouni, S. E.,“A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada,” J. Appl. Meteorol. Climatol, vol.47, p. 2745-2759, 2008.
    44. Vinoth, J., and Young, I. R.,“Global Estimates of Extreme Wind Speed and Wave Height,” J. Climate, Vol.24, p. 1627-1665, 2010.
    45. Etienne, C., Lehmann, A., and Goyette, S.,“Spatial Predictions of Extreme Wind Speeds over Switzerland Using Generalized Additive Models,” J. Appl. Meteorol. Climatol, Vol.49, p.1956-1970, 2010.
    46. Monahan, A. H., “The Gaussian Statistical Predictability of Wind Speeds,” J. Climate, Vol.26, p.5563-5577, 2013.
    47. Ishihara, T., Yamaguchi, A., Takahara, K., Mekaru, T., and Matsuura, S., “An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003,” APCWE-VI, p. 1413-1428, 2005.
    48. Itano, T., and Hosoya, M., “Spectral Analyses of the Polygonal Eye of Typhoon Sinlaku,” Mon. Wea. Rev., Vol.141, p. 987-996, 2013.
    49. Wei, N., and Li, Y.,“A Modeling Study of Land Surface Process Impacts on Inland Behavior of Typhoon Rananim (2004),” Adv. Atmos. Sci. , Vol. 30, p.367-381, 2013.
    50. Sraj, I., Arani, M. I., Srinivasan, A., Thacker, W. C., Winokur, J., Alexanderian, A., Lee, C. Y., Chen, S. S., and Knio, O.M., “Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi,” Mon. Wea. Rev., Vol. 141, p. 2347-2367, 2013.
    51. Rozynski, G., Hung, N. M., and Ostrowski, R., “Climate Change Related Rise Of Extreme Typhoon Power And Duration Over South-East Asia Seas,” Coast. Eng. J., Vol. 51, p. 205-222, 2009.
    52. Mashiko, W., Niino, H., and Kato, T., “Numerical Simulation of Tornado genesis in an Outer-Rainband Minisupercell of Typhoon Shanshan on 17 September 2006,” Mon. Wea. Rev., Vol.137, p. 4238-4260, 2009.
    53. Rozanova, O.,“Note On The Typhoon Eye Trajectory,” Regular Chaotic. Dyn., Vol. 9, p. 129-142, 2004.
    54. Sakihama, H., and Tokuyama, A., “Effect of typhoon on chemical composition of rainwater in Okinawa Island, Japan,” Atmos. Environ., Vol. 39, p. 2879-2888, 2005.

    下載圖示 校內:2020-01-30公開
    校外:2020-01-30公開
    QR CODE