簡易檢索 / 詳目顯示

研究生: 黃宇哲
Huang, Yu-Che
論文名稱: 促進永續IoT程式設計學習:視覺辨識式AI對學習者行為、認知負荷與學習動機之影響
Enhancing Sustainable Learning in IoT Programing Education: Impact of Visual Recognition-Based AI on Learner Behavior, Cognitive Load, and Motivation
指導教授: 賴槿峰
Lai, Chin-Feng
黃悅民
Huang, Yueh-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 77
中文關鍵詞: 生成式人工智慧輔助學習視覺辨識技術物聯網程式設計行為序列分析認知負荷學習動機
外文關鍵詞: Generative AI-assisted learning, Visual recognition technology, IoT programming, Lag sequential analysis, Cognitive load, Learning motivation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧(Artificial Intelligence,AI)技術持續進步,大型語言模型、生成式AI技術與視覺辨識系統已逐漸被導入教育情境,協助學生在複雜的學習任務中獲得即時輔助。AI輔助學習雖能提供個人化建議和語意回饋,但其缺乏對實體任務的感知能力,使得學習者在真實操作中依然面臨許多挑戰。目前大多數AI介入程式教學仍侷限於邏輯和語法層面的支援,對於需要實作與抽象邏輯並重的物聯網程式設計課程,仍無法主動提供充足且情境化的引導。學生在此類課程中常需同時進行程式撰寫、電子元件辨識與電路組裝,對初學者而言,不僅認知負荷高,也容易因錯誤頻繁而降低學習動機與自信心。過往研究大多聚焦於學習成效的提升,卻較少探討AI如何實際影響學生的行為歷程與策略發展。學習行為不只是結果的過程,更反映了學生面對挑戰時的思考邏輯、自我調整能力與動機狀態,若能加以分析與理解,將有助於打造更具適應性與引導性的AI學習系統。因此,本研究建置兩種AI支援學習平台,其中實驗組使用具備即時視覺辨識功能與生成式AI對話模組的智慧電子元件辨識學習系統(IERLS),對照組則僅使用文字型AI輔助系統(IELS)。本研究以18週的IoT專題課程為實驗場域,招募具初階程式經驗的大學生參與,並透過行為序列編碼與轉移分析,結合學習成績、認知負荷問卷與三階段ARCS動機評量等工具,全面探討不同AI系統對學習歷程與學習心理的影響。
    研究結果顯示,IERLS系統不僅有效提升學生學習成效,亦能顯著降低外在認知負荷,並促進學生在意義建構與任務策略上的投入。其學習行為展現出更高比例的規劃性與目標導向行為。在課程中後期,實驗組學生的注意力、信心與任務相關性感知皆持續上升,動機維持優於對照組,顯示視覺AI所提供的即時回饋與情境提示機制,能夠強化學習者的自我效能與正向循環。本研究不僅驗證結合視覺辨識與語言生成AI之系統能有效支援具實作性質的課程,也強調分析學習行為歷程對理解AI教學效果的重要性。進一步而言,IERLS所展現的學習支持潛力也顯示,未來可擴展應用至非資訊科系學生、跨領域學習者,或對硬體技術不熟悉之群體,作為平衡技能落差與促進教育平權的實用工具。本研究成果不僅為AI教學設計與學習分析研究提供實證支持,也回應了教育永續性的實踐需求,對促進AI於教學現場之普及與深化具有長遠意義。

    As artificial intelligence (AI) continues to evolve, generative language models and visual recognition systems have become increasingly integrated into education to support complex learning tasks. However, most AI tools in programming education remain limited to syntax- and logic-level assistance, lacking contextual awareness for hands-on tasks such as component assembly and physical debugging. This gap is especially evident in Internet of Things (IoT) programming, where students must simultaneously write code, recognize components, and build circuits tasks that pose high cognitive demands and may reduce learners’ motivation and confidence.
    This study implemented two AI-supported learning systems: the Intelligent Electronic Components Recognition Learning System (IERLS), which combines real-time visual recognition capabilities with generative AI (GAI) based instructional support, and Intelligent Electronic Learning System (IELS), a text-only AI support platform. Conducted over an 18-week IoT course, the study involved university students with basic programming knowledge. Learning behavior was analyzed using log-based sequential analysis, and learning outcomes were assessed through performance scores, ARCS-based motivation scales, and cognitive load questionnaires. Results revealed that the IERLS group outperformed the control group in learning achievement, reported lower extraneous cognitive load, and showed higher engagement in meaningful, goal-directed learning behaviors. Visual AI support facilitated efficient task sequences involving identification, inquiry, revision, and testing, thereby reducing repetitive trial-and-error behaviors. Furthermore, students using IERLS exhibited sustained gains in attention, confidence, and task relevance, demonstrating enhanced motivation and self-regulation.
    This study highlights the value of combining generative and visual AI in hands-on programming education. It also suggests the potential for expanding such systems to interdisciplinary learners, supporting educational equity, and promoting sustainable, adaptive learning environments through behavior-driven, multimodal AI support.

    摘要I Abstract II Acknowledgements III Table of Contents IV List of Table VI List of Figures VII Chapter1 Introduction 8 1.1 The Rise of Generative AI in Education 8 1.2 Limitations of Current AI Tools in Programming Tasks 9 1.3 The Importance of Learning Process in AI-Assisted Learning 10 1.4 Potential for Broader Educational Equity and Cross-Disciplinary Applications 12 1.5 Research Questions 13 Chapter 2 Literature Review 14 2.1 Ai-Assisted Programming Education 14 2.2 The Impact of AI Intervention in Learning on Cognitive Load 15 2.3 Learning Motivation and The ARCS Model 16 2.4 Learning Behavior and Sequential Analysis 18 2.5 Education Sustainability and Equity 19 Chapter 3 Method 21 3.1 Intelligent Electronic Components Recognition Learning System 21 3.1.1 System Architecture 21 3.1.2 Component Recognition Dataset Preparation and Model Training 22 3.1.3 Dual-Camera Fusion Strategy for Enhanced Component Recognition 27 3.1.4 IRELS User Interface and Platform Functionality 29 3.2 Participants 35 3.3 Experimental Procedure 35 3.4 Measurements 38 3.4.1 Learning Achievement 38 3.4.2 Cognitive Load (See Appendix 2) 39 3.4.3 Learning Motivation (See Appendix 3) 40 3.4.4 Technology Acceptance Model (See Appendix 4) 41 Chapter 4 Results 42 4.1 t-Test and Ancova Analyses of Learning Outcomes 42 4.2 Differences Across Three Cognitive Load Dimensions 44 4.3 Temporal Patterns of Learning Motivation 46 4.4 Differences in Learning Processes and Behavioral Transitions 49 4.5 Comparison of Technology Acceptance Under Different Mechanisms 55 Chapter 5 Discussion 56 5.1 Research Question 1: Learning Achievement 56 5.2 Research Question 2: Cognitive Load 57 5.3 Research Question 3: Motivation 58 5.3 Research Question 4: Technology Acceptance 60 5.5 Research Question 5: Learners’ Behavioral Patterns 61 Chapter 6 Conclusion 63 6.1 Major Findings Summary 63 6.2 Limitations and Future Works 63 References 65 Appendix 72 Appendix 1: Cognitive Load Scale 72 Appendix 2: Learning Motivation Scale 73 Appendix 3: Technology Acceptance Scale 75

    Ahmed, A. A., Bellam, K., Yang, Y., & Preuss, M. (2022). Integrating iot technologies into the cs curriculum at pvamu: A case study. Education Sciences, 12(11), 840.
    Aikens, K., McKenzie, M., & Vaughter, P. (2018). Environmental and sustainability education policy research: A systematic review of methodological and thematic trends. Environmental and Sustainability Education Policy, 265-292.
    Al-Zahrani, A. M. (2024). Unveiling the shadows: Beyond the hype of AI in education. Heliyon, 10(9).
    Ali, F., Choy, D., Divaharan, S., Tay, H. Y., & Chen, W. (2023). Supporting self-directed learning and self-assessment using TeacherGAIA, a generative AI chatbot application: Learning approaches and prompt engineering. Learning: research and practice, 9(2), 135-147.
    Alsaiari, O., Baghaei, N., Lahza, H., Lodge, J., Boden, M., & Khosravi, H. (2024). Emotionally enriched feedback via generative AI. arXiv preprint arXiv:2410.15077.
    Bakeman, R., & Adamson, L. B. (1984). Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child development, 1278-1289.
    Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. Cambridge University Press.
    Çakiroğlu, Ü., & Bilgi, Ş. (2024). Exploring intrinsic cognitive load in the programming process: a two dimensional approach based on element interactivity. Interactive Learning Environments, 32(5), 2045-2063.
    Carter, N. (2014). The use of triangulation in qualitative research. Number 5/September 2014, 41(5), 545-547.
    Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning interpretability: A survey on methods and metrics. Electronics, 8(8), 832.
    Çela, E., Fonkam, M. M., & Potluri, R. M. (2024). Risks of AI-assisted learning on student critical thinking: a case study of Albania. International Journal of Risk and Contingency Management (IJRCM), 12(1), 1-19.
    Chang, C.-J., Chang, M.-H., Chiu, B.-C., Liu, C.-C., Chiang, S.-H. F., Wen, C.-T., Hwang, F.-K., Wu, Y.-T., Chao, P.-Y., & Lai, C.-H. (2017). An analysis of student collaborative problem solving activities mediated by collaborative simulations. Computers & Education, 114, 222-235.
    Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE access, 8, 75264-75278.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using YOLO: challenges, architectural successors, datasets and applications. multimedia Tools and Applications, 82(6), 9243-9275.
    Du, X., Du, M., Zhou, Z., & Bai, Y. (2025). Facilitator or hindrance? The impact of AI on university students' higher-order thinking skills in complex problem solving. International Journal of Educational Technology in Higher Education, 22(1), 39.
    Duran, R., Zavgorodniaia, A., & Sorva, J. (2022). Cognitive load theory in computing education research: A review. ACM Transactions on Computing Education (TOCE), 22(4), 1-27.
    Entwistle, N. J., & Peterson, E. R. (2004). Conceptions of learning and knowledge in higher education: Relationships with study behaviour and influences of learning environments. International journal of educational research, 41(6), 407-428.
    Ferguson, T., & Roofe, C. G. (2020). SDG 4 in higher education: Challenges and opportunities. International Journal of Sustainability in Higher Education, 21(5), 959-975.
    Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., & Pearson, A. T. (2022). Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. BioRxiv, 2022.2012. 2023.521610.
    Gentile, M., Città, G., Perna, S., & Allegra, M. (2023, March). Do we still need teachers? Navigating the paradigm shift of the teacher's role in the AI era. In Frontiers in Education (Vol. 8, p. 1161777). Frontiers Media SA.
    Giannakos, M., Azevedo, R., Brusilovsky, P., Cukurova, M., Dimitriadis, Y., Hernandez-Leo, D., Järvelä, S., Mavrikis, M., & Rienties, B. (2024). The promise and challenges of generative AI in education. Behaviour & Information Technology, 1-27.
    Gkintoni, E., Antonopoulou, H., Sortwell, A., & Halkiopoulos, C. (2025). Challenging cognitive load theory: The role of educational neuroscience and artificial intelligence in redefining learning efficacy. Brain Sciences, 15(2), 203.
    Grinschgl, S., & Neubauer, A. C. (2022). Supporting cognition with modern technology: Distributed cognition today and in an AI-enhanced future. Frontiers in Artificial Intelligence, 5, 908261.
    Groothuijsen, S., van den Beemt, A., Remmers, J. C., & van Meeuwen, L. W. (2024). AI chatbots in programming education: Students’ use in a scientific computing course and consequences for learning. Computers and Education: Artificial Intelligence, 7, 100290.
    Han, J., & Wei, Z. (2021, September). Analysis and Research on Students' Learning Behavior Based on Lag Sequence Analysis. In 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI) (pp. 532-535). IEEE.
    Handur, V., Kalwad, P. D., Patil, M. S., Garagad, V. G., Yeligar, N., Pattar, P., ... & Joshi, G. H. (2016, December). Integrating class and laboratory with hands-on programming: Its benefits and challenges. In 2016 IEEE 4th International Conference on MOOCs, Innovation and Technology in Education (MITE) (pp. 163-168). IEEE.
    He, J., Lo, D. C. T., Xie, Y., & Lartigue, J. (2016, October). Integrating Internet of Things (IoT) into STEM undergraduate education: Case study of a modern technology infused courseware for embedded system course. In 2016 IEEE frontiers in education conference (FIE) (pp. 1-9). IEEE.
    Heimlich, J. E., & Ardoin, N. M. (2008). Understanding behavior to understand behavior change: A literature review. Environmental education research, 14(3), 215-237.
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioural patterns of online learning activities. British Journal of Educational Technology, 41(2).
    Iskender, A. (2023). Holy or unholy? Interview with open AI’s ChatGPT. European Journal of Tourism Research, 34, 3414-3414.
    Jose, B., Cherian, J., Verghis, A. M., Varghise, S. M., S, M., & Joseph, S. (2025). The cognitive paradox of AI in education: between enhancement and erosion. Frontiers in Psychology, 16, 1550621.
    Kang, S., Chen, B., Yoo, S., & Lou, J.-G. (2025). Explainable automated debugging via large language model-driven scientific debugging. Empirical Software Engineering, 30(2), 45.
    Karchemsky, M., Zamfirescu-Pereira, J. D., Wu, K. J., Guimbretière, F., & Hartmann, B. (2019, May). Heimdall: A remotely controlled inspection workbench for debugging microcontroller projects. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
    Keller, J. M. (1987). Strategies for stimulating the motivation to learn. Performance and instruction, 26(8), 1-7.
    Krullaars, Z. H., Januardani, A., Zhou, L., & Jonkers, E. (2023). Exploring initial interactions: High school students and generative ai chatbots for relationship development. In Mensch und Computer 2023-Workshopband (pp. 10-18420). Gesellschaft für Informatik eV.
    Laurens-Arredondo, L. (2022). Mobile augmented reality adapted to the ARCS model of motivation: a case study during the COVID-19 pandemic. Education and Information Technologies, 27(6), 7927-7946.
    Lee, Y.-F., Hwang, G.-J., & Chen, P.-Y. (2022). Impacts of an AI-based cha bot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational technology research and development, 70(5), 1843-1865.
    Li, L., Huang, C. W., Morgan, C., Luttgen, K., Chow, E., & Yang, S. (2025, January). Empowering rural students through computational thinking and real-world STEM applications: insights from an innovative high school curriculum. In Frontiers in Education (Vol. 9, p. 1452470). Frontiers Media SA.
    López-Pernas, S., & Saqr, M. (2024). How the dynamics of engagement explain the momentum of achievement and the inertia of disengagement: A complex systems theory approach. Computers in Human Behavior, 153, 108126.
    Maier, U., & Klotz, C. (2022). Personalized feedback in digital learning environments: Classification framework and literature review. Computers and Education: Artificial Intelligence, 3, 100080.
    Marzano, D. (2025). Generative Artificial Intelligence (GAI) in Teaching and Learning Processes at the K-12 Level: A Systematic Review: D. Marzano. Technology, Knowledge and Learning, 1-41.
    Mbalaka, B. (2023). Epistemically violent biases in artificial intelligence design: the case of DALLE-E 2 and Starry AI. Digital Transformation and Society, 2(4), 376-402.
    Memarian, B., & Doleck, T. (2023). ChatGPT in education: Methods, potentials, and limitations. Computers in Human Behavior: Artificial Humans, 1(2), 100022.
    Mohammadi, M., Tajik, E., Martinez-Maldonado, R., Sadiq, S., Tomaszewski, W., & Khosravi, H. (2025). Artificial intelligence in multimodal learning analytics: a systematic literature review. Computers and Education: Artificial Intelligence, 100426.
    Moon, J., & Liu, Z. (2019). Rich representations for analyzing learning trajectories: Systematic review on sequential data analytics in game-based learning research. Data analytics approaches in educational games and gamification systems, 27-53.
    Mustafa, M. Y., Tlili, A., Lampropoulos, G., Huang, R., Jandrić, P., Zhao, J., Salha, S., Xu, L., Panda, S., & Kinshuk. (2024). A systematic review of literature reviews on artificial intelligence in education (AIED): a roadmap to a future research agenda. Smart Learning Environments, 11(1), 59.
    Nedungadi, P., Tang, K.-Y., & Raman, R. (2024). The transformative power of generative artificial intelligence for achieving the sustainable development goal of quality education. Sustainability, 16(22), 9779.
    Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development.
    Peng, L., Li, D., Zhang, Z., Zhang, T., Huang, A., Yang, S., & Hu, Y. (2024). Human-AI collaboration: Unraveling the effects of user proficiency and AI agent capability in intelligent decision support systems. International Journal of Industrial Ergonomics, 103, 103629.
    Pohl, M., Wallner, G., & Kriglstein, S. (2016). Using lag-sequential analysis for understanding interaction sequences in visualizations. International Journal of Human-Computer Studies, 96, 54-66.
    Rajendran, V., & Ramasamy, R. K. (2023, December). Artificial Intelligence Integration in Programming Education: Implications for Pedagogy and Practice. In International Conference on Computer Vision, High-Performance Computing, Smart Devices, and Networks (pp. 197-206). Singapore: Springer Nature Singapore.
    Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to foster equity in education: Opportunities, challenges, and emerging strategies. Journal of Intelligent Learning Systems and Applications, 15(4), 123-143.
    Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D., & Demir, I. (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), 596.
    Schmidhuber, J., Schlögl, S., & Ploder, C. (2021, September). Cognitive load and productivity implications in human-chatbot interaction. In 2021 IEEE 2nd international conference on human-machine systems (ICHMS) (pp. 1-6). IEEE.
    Schroeder, N. L., & Cenkci, A. T. (2018). Spatial contiguity and spatial split-attention effects in multimedia learning environments: A meta-analysis. Educational psychology review, 30(3), 679-701.
    Schulze Buschoff, L. M., Akata, E., Bethge, M., & Schulz, E. (2025). Visual cognition in multimodal large language models. Nature Machine Intelligence, 7(1), 96-106.
    Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. Interactive Learning Environments, 15(1), 27-46.
    Sun, D., Ouyang, F., Li, Y., Zhu, C., & Zhou, Y. (2024). Using multimodal learning analytics to understand effects of block‐based and text‐based modalities on computer programming. Journal of Computer Assisted Learning, 40(3), 1123-1136.
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
    Sweller, J., Van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational psychology review, 31(2), 261-292.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10, 251-296.
    Taufikin, M. S. I., Azifah, N., Nikmah, F., & Kuanr, J. (2024, April). The Impact of AI on Teacher Roles and Pedagogy in the 21st Century Classroom. In 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (Vol. 1, pp. 1-5). IEEE.
    Tlili, A., Sun, T., Denden, M., Kinshuk, Graf, S., Fei, C., & Wang, H. (2023). Impact of personality traits on learners’ navigational behavior patterns in an online course: A lag sequential analysis approach. Frontiers in Psychology, 14, 1071985.
    Tsai, C.-Y., Shih, W.-L., Hsieh, F.-P., Chen, Y.-A., Lin, C.-L., & Wu, H.-J. (2022). Using the ARCS model to improve undergraduates’ perceived information security protection motivation and behavior. Computers & Education, 181, 104449.
    Tu, Y.-F., Hwang, G.-J., & Hu, D. (2025). Effects on the learning achievement, approaches to learning, and multi-stage reflection quality of students with different levels of digital self-efficacy in a data literacy course: An ARCS-based self-reflective online learning model. Computers & Education, 105397.
    Twabu, K. (2025). Enhancing the cognitive load theory and multimedia learning framework with AI insight. Discover Education, 4(1), 160.
    van Nooijen, C. C., de Koning, B. B., Bramer, W. M., Isahakyan, A., Asoodar, M., Kok, E., van Merrienboer, J. J., & Paas, F. (2024). A cognitive load theory approach to understanding expert scaffolding of visual problem-solving tasks: A scoping review. Educational psychology review, 36(1), 12.
    Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: insights from a meta-analysis. Humanities and Social Sciences Communications, 12(1), 1-21.
    Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252, 124167.
    Xiao, R., Hou, X., & Stamper, J. (2024, May). Exploring how multiple levels of GPT-generated programming hints support or disappoint novices. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (pp. 1-10).
    Yan, L., Martinez-Maldonado, R., Jin, Y., Echeverria, V., Milesi, M., Fan, J., Zhao, L., Alfredo, R., Li, X., & Gašević, D. (2025). The effects of generative AI agents and scaffolding on enhancing students’ comprehension of visual learning analytics. Computers & Education, 105322.
    Yang, T.-C., Chen, S. Y., & Hwang, G.-J. (2015). The influences of a two-tier test strategy on student learning: A lag sequential analysis approach. Computers & Education, 82, 366-377.
    Yildiz Durak, H. (2025). Impact of ML-LA feedback system on learners’ academic performance, engagement and behavioral patterns in online collaborative learning environments: A lag sequential analysis and Markov chain approach. Education and Information Technologies, 30(2), 2623-2644.
    Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of generative artificial intelligence (AI)-based tool use on students' computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4, 100147.
    Yusuf, A., Pervin, N., Román‐González, M., & Noor, N. M. (2024). Generative AI in education and research: A systematic mapping review. Review of education, 12(2), e3489.
    Zaghloul, M. A., Hassan, A., & Dallal, A. (2021, July). Teaching and managing remote lab-based courses. In 2021 ASEE Virtual Annual Conference Content Access.
    Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students' cognitive abilities: a systematic review. Smart Learning Environments, 11(1), 28l.

    QR CODE