| 研究生: |
洪瑞賢 Horng, Ruey-Shyan |
|---|---|
| 論文名稱: |
區段人體組織成份之量測系統 The segmental body composition measurement system |
| 指導教授: |
鄭國順
Cheng, Kuo-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 生醫阻抗 、模糊迴歸分析 、線性迴歸分析 |
| 外文關鍵詞: | FUZZY REGRESSION ANALYSIS, BIA, BIOIMPEDANCE |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中 文 摘 要
當我們探討人體組織成份的時候,BIA是經常廣泛使用在非脂肪面積(FFM)和脂肪面積(FM)的計算。體脂肪在人體是一個重要參數,它可以幫助我們了解人們的健康和疾病。此研究的目的在於發展一套區段式人體組織量測系統和建立國人的生醫阻抗資料庫。量測系統包含量測阻抗、手臂的長度和周長、人體體重和皮膚與電極間溫度變化。被量測的資料透過RS232介面傳輸並藉由LabVIEW顯示在PC上。這些資料將以文字檔的型式儲存在硬碟並同時建立生醫阻抗資料庫。生醫阻抗資料庫藉由EXCEL、SPSS和FuzzyTECH軟體進行線性迴歸及模糊分析。最後建立生醫阻抗與人體測量學相關的人體組織成份計算公式。另外與DEXA比較和分析線性迴歸與模糊迴歸分析的平均誤差。線性迴歸分析為3.98,模糊迴歸分析為1.83。溫度量測在2分鐘後上升0.03℃~0.06℃當室溫23℃~27.7℃體表溫度28.4℃~32.7℃下,溫度與區段阻抗值在量測過程中變化非常小。
ABSTRACT
Bioelectrical impedance analysis (BIA) is often widely used for the estimation of fat free mass (FFM) and fat mass (FM) when studying body composition. Body fat is an important parameter in human body, it can help us understand human health and diseases. The purposes of this study are to develop the segmental body composition measurement system and establish Chinese bioimpedance database. The measurement system contains impedance measurement, length and circumference measurement of the arms, human body weight measurement and the measurement of thermal variation between the skin and the electrode. These measured data is transmitted via RS232 and displayed to PC by LabVIEW. These data is saved the text file format to hard disk and established bioimpedance database at the same time. This bioimpedance database is applied to linear regression and fuzzy analysis by the software of Excel, SPSS and FuzzyTECH. Finally, we can find the estimation formulas for body composition related to bioimpedance and anthropometry. In addition, the average errors of linear regression analysis and fuzzy regression analysis are compared to DEXA and analzed. Linear regressin analysis is 3.98 and fuzzy regression analysis is 1.83. The temperature measurement after two minutes ascend 0.03℃~0.06℃ under room temperature(23℃~27.7℃) and skin temperature(28.4℃~32.7℃). The variations of thermal and segmental impedance are very small in measurement.
REFERENCES
[1] B. H. Cornish, A. Jacobs, B. J. Thoma, and L. C. Ward, “Optimizing electrodes sites for segmental bioimpedance measurements,” Physiological Measurement, vol. 20, pp. 241-250, 1999.
[2] L. B. Houtkooper, T. G. Lohman, S. B.Going, and W. H. Howell, “Why bioelectrical impedance analysis should be used for estimating adiposity,” The Amican Journal of Clinical Nutrition, vol. 64, pp. 436-448, 1996.
[3] A. Pietrobelli, P. Moriini, N. Battistini, G. Chiumello, C Nunez, and S. B. Heymsfield, “Appendicular skeletal muscle mass: Prediction from multiple frequency segmental bioimpedance analysis,” Eourpean Journal of Clinical Nutrition, vol. 52, pp. 507- 511, 1998.
[4] R. Alex and P. Z. Wang, “A new resolution of fuzzy regression analysis,” IEEE International Conference on System, Man, and Cybemetics, pp. 704-708, 1998.
[5] D. B. Stroud, “What does bioimpedance measure?” Proceedings of the 2nd International Conference on Bioelectromagnetism, pp. 43, 1998.
[6] A. Lozano, “Electrode errors in bioimpedance measurement systems for long-term applications,” Proceedings of the Sixteenth Southern Biomedical Engineering Conference, pp. 3-6, 1997.
[7] I. D. Schneider, “A programmable DDS waveform generator for electrical impedance tomography,” IEE Colloquium on Advanced in Electrical Tomography, pp. 1-3, 1996.
[8] Y. Ulgen, E. Yavuz, and S. M. Egi, “Validation of bioelectrical impedance to assess body composition change at altitude,” Proceedings of the First joint BMES/EMBS Conference, vol. 2, pp. 815, 1999.
[9] F. Zhu, D. Schneditz, and N. W. Levin, “Estimation of trunk extracellular volume by bioimpedance,” Proceedings of the 20th Annual International Conference of the IEEE, vol. 6, pp. 3104-3107, 1998.
[10] M. A. Khaled, M. Khatun, M. Haque, I. Kabir, and D. Mahalanabis, “Single, dual and multi-frequency bioimpedance to measure human body composition,” Proceedings of the First Regional Conference of the IEEE, pp. 87-88, 1995.
[11] S. Tonkovic, I. Tonkovic, and D. Kovacic, ”Bioelectrical impedance analysis of lower leg ischaemic muscles,” Proceedings of the 22nd Annual International Conference of the IEEE, vol. 1, pp. 757-760, 2000.
[12] C. Ren, H. Wang, Y. An, H. Sha, and G. Lin, “Development of electrical bioimpedance technology in the future,” Proceedings of the 20th Annual International Conference of the IEEE, vol. 2, pp. 1052-1054, 1998.
[13] Y. Yamamoto, T. Nakamura, T. Kusuhara, and Adli, ”Consideration of conditions required for multi-channel simultaneous bioimpedance measurement,” IEEE Instrumentation and Measurement Technology Conference, vol.1, pp. 231-234, 1998.
[14] S. Ollmar and I. Nicander, “ Diagnostic potential of electrical bio-impedance for skin and oral mucosa,” Proceedings of the 2nd International Conference on Bioelectromagnetism, pp. 73-74, 1998.
[15] A. Lozano-Nieto and D. Rezywowski, ”Electrical models for bioimpedance measurements,” Proceedings of the IEEE 24th Annual Northeast bioengineering conference, pp. 118-119, 1998.
[16] F. Zhu, D. Schneditz, E. Wang, and N. W. Levin, ”Continuous measurement of segmental and whole body bio-impedance,” Proceedings of the 19th Annual International Conference of the IEEE, vol. 5, pp. 2086-2088, 1997.
[17] T. Nawarycz, K. Pacholski, J. Kaczmarek, and J. Jankowski, ”Electroimpedance measurements of body composition employing the method of double sampling,” Proceedings of the 18th Annual International Conference of the IEEE, vol. 5, pp. 1932-1933, 1997.
[18] T. Palko, F. Bialokoz, and J. Weglarz, “Multifrequency device for measurement of the complex electrical bio-impedance-design and application,” Proceedings of the 14th Conference of the Biomedical Engineering Society of India, pp. 45-46, 1995.
[19] B. Rigaud, L. Hamzaoui, N. Chauveau, E. Martinez, and J. Morucci, “Tissue characterization and modeling by electrical bioimpedance spectrometry,” Proceedings of the 16th Annual International Conference of the IEEE, vol. 2, pp. 866-867, 1994.
[20] T. Nakamura, H. Isshiki, and Y. Yamamoto, “Development of device measuring human motion and psychological activity based on bioimpedance,” Proceedings of Instrumentation and Measurement Technology Conference, vol. 2, pp. 955-958, 1994.
[21] R. Pallas-Areny and J. G. Webster, “Bioelectric impedance measurements using synchronous sampling,” IEEE Transactions on Biomedical Engineering, vol. 40, pp. 824-829, 1993.
[22] L. Ward, B. Cornish, N. Fuller, O. Dewit, M. Elia, and B. Thomas, ”Bioelectrical impedance analysis: The electronic skin-fold caliper?” 2nd International Conference on Bioelectromagnetism, pp. 101-102, 1998.
[23] D. Shaw and B. K. Kavanal, “Development of a multiple regression equation to predict judo performance with the help of selected structural and body composition variables,” IEEE Proceedings of the First Regional Conference, pp. 397-398, 1995.
[24] I. Kabir, M. Khatun, S. Islam, D. Mahalanabis, and M. A.Khaled, “Estimation of body composition of adult Bangladeshi male and female using bioelectrical impedance analysis,” IEEE Proceedings of the First Regional Conference, pp. 480-481, 1995
[25] D. A. Schoeller and R. F. Kushner, “Determination of body fluids by the impedance technique,” IEEE Engineering in Medicine and Biology Magazine, vol. 8, pp. 19-21,1989.
[26] R. Patterson, “Body fluid determinations using multiple impedance measurements,” IEEE Engineering in Medicine and Biology Magazine, vol. 8, pp. 16-18, 1989.
[27] W. A. Waugaman and C. B. Schrader, “Optimal current model from surface electrodes,” Proceedings of the 33rd IEEE Decision and Control Conference, vol. 4, pp. 4112-4113, 1994.
[28] T. Cochrane, A. M. Holroyd, and D. G. Howarth, “Measuring body fat: A comparison of whole body potassium, infrared reflectance and bioeliectric impedance,” IEE Colloquium on Measurement in Sport and Exercise, pp.21–22, 1992.
[29] F. Zhu, D. Schneditz, and N. W. Levin, “Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduces sensitivity to changes in body postion,” Kidney International, vol. 56, pp. 692-699.
[30] C. Nunez, D. Gallagher, M. Visser, F. X. Pi-Sunyer, Z. Wang, and S. B. Heymsfield, “Bioimpedance analysis: evaluation of leg-to-leg system based on presure contact foot-pad electrodes,” Medicine and Science in Sports and Exercise, vol. 29, pp. 524-531, 1997.
[31] Analog Devices, ADSP-218X Family Assembler Tools & Simulator Manual. 2nd Edition , Prentice-Hall, USA, 2000.
[32] J. Nazarko and W. Zalewski, “An application of the fuzzy regression analysis to the electrical load estimation,” Proceedings of the 8th Mediterranean Electrotechnical Conference, pp. 1563-1566, 1996
[33] J. K. George and Y. Bo, Fuzzy sets and fuzzy logic theory and applications. Prentice-Hall, New Jersey, 1995.
[34] L. W. Organ, G. B. Brandham, D. T. Gore, and S. L. Lozier, “Segmental bioelectrical impedance analysis: theory and application of a new technique,” Journal of Applied Physics, vol. 77, pp. 98-112, 1994.
[35] Y. S. Wen, M. Schafer, S. Dubin, M. O'Connor, C. Ozturk, and C. C. Min, “ Skin temperature and impedance measurement in ultrasound wound treatment,” Proceedings of the Fifteenth Southern Biomedical Engineering Conference, pp. 348 –350, 1996.
[36] E. C. Hoffer, C. K. Meader, and D. C. Simpson, “correlation of whole body impedance with total body volume,” Journal of Applied Physiology, vol. 27, pp. 531-534, 1996.