簡易檢索 / 詳目顯示

研究生: 洪群程
Hung, Chun-Cheng
論文名稱: 利用超音波霧化熱裂解沉積法製備非晶氧化銦鎵鋅之金屬氧化物薄膜電晶體之研究
Investigation of a-IGZO Metal Oxide Thin Film Transistors Fabricated by Ultrasonic Spray Pyrolysis Deposition
指導教授: 許渭州
Hsu, Wei-Chou
共同指導教授: 劉漢胤
Liu, Han-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 49
中文關鍵詞: 氧化銦鎵鋅薄膜電晶體超音波噴霧熱裂解沉積法
外文關鍵詞: InGaZnO, thin film transistors, ultrasonic spray pyrolysis deposition
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是在探討如何利用超音波霧化熱裂解沉積法製備非晶氧化銦鎵鋅薄膜光電晶體。為了減少製程時間且降低成本,我們選用了比溶膠凝膠法更易控制薄膜厚度的非真空製程 – 超音波霧化熱裂解沉積法。我們將此製程應用於薄膜電晶體之通道以及氧化層材料上,成功做出底閘極結構的薄膜光電晶體。
    為了瞭解利用超音波霧化熱烈解沉積法製備的氧化銦鎵鋅薄膜晶像、表面粗糙度、晶粒大小、化學組成、氧空缺、折射係數、薄膜厚度,在本研究中我們利用以下技術來分析材料特性 (一) X-射線繞射分析、(二) 原子力顯微鏡、(三) 掃描式電子顯微鏡、(四) 化學分析影像能譜儀、(五) 橢圓偏光儀、(六) 穿透式電子顯微鏡。
    在瞭解薄膜的材料特性後,我們將超音波噴霧熱裂解沉積技術應用於底閘極結構的薄膜光電晶體上,分別以440oC和430oC成長氧化鋁介電層和氧化銦鎵鋅主動層,並利用電流-電壓特性來確認元件的電性表現。
    為了瞭解非晶氧化銦鎵鋅薄膜光電晶體之光響應,我們給予入射波長為260nm到450nm的光,再利用光電流與暗電流去計算出在不同波段下元件的光響應程度,並分析此非晶氧化銦鎵鋅薄膜之截止波段,推算出薄膜的能隙寬。在本研究中,超音波噴霧熱裂解沉積法對於未來以低成本和低製程時間開發非晶氧化銦鎵鋅薄膜光電晶體有很大的幫助。

    In this thesis, we will investigate how to fabricate amorphous InGaZnO thin film phototransistors by using ultrasonic spray pyrolysis deposition technique. In order to shorten the process time and reduce the cost, we use a much better non-vacuum process than sol-gel, ultrasonic spray pyrolysis deposition (USPD). USPD performs better ability on accurately controlling the thickness of the thin film. Applying this process to the active layer and the gate dielectric layer of the thin film phototransistor, we successfully fabricate the bottom-gate structure thin film phototransistor.
    In order to understand the crystal, surface roughness, grain size, chemical composition, oxygen vacancy, refractive index and thickness of the IGZO thin film prepared by USPD, we used the following technique to analyze in this work. (1) X-ray Diffraction (XRD) (2) Atomic Force Microscopy (AFM) (3) Scanning Electron Microscope (SEM) (4) Electron Spectroscopy for Chemical Analysis (ESCA) (5) Ellipsometry (6) Transmission Electron Microscopy (TEM).
    After understanding the material properties of the thin film, we applied the USPD technique to the bottom-gate structure thin film phototransistor and fabricate the Al2O3 gate dielectric layer and IGZO active layer at 440oC and 430oC, respectively. Furthermore, the current-voltage characteristics were measured.
    In order to understand the spectra response of a-IGZO thin film phototransistor, we measured the photocurrent of the device under illumination with the range of measuring wavelength from visible region (450nm) to UV region (260nm) and calculate the responsivity. Besides, we can also calculate the bandgap of IGZO thin film from the cutoff wavelength (310nm). In this study, the USPD technique is helpful for the future development of a-IGZO thin film phototransistor with low cost and low process time.

    Contents 摘要 I Abstract III 誌 謝 V Contents VII Figure Captions IX Table Captions XI Chapter 1 Introduction 1 1-1 Background and Motivation 1 1-1-1 Introduction of Thin Film Transistors 2 1-1-2 Structures of Thin Film Transistors 5 1-2 Organization 6 Chapter 2 Basic Theory 7 2-1 Metal Oxide Thin Film Transistor 7 2-1-1 Principle of operation 7 2-1-2 Responsivity and Quantum Efficiency 9 Chapter 3 Material Growth and Experimental Procedures 10 3-1 IGZO-based Thin Film Transistors 10 3-1-1 Gate dielectric layer 11 3-1-2 Channel layer 12 3-1-3 Ohmic contact 12 Chapter 4 Results and Discussion 14 4-1 Optimization 14 4-1-1 Different Thickness of Al2O3 14 4-1-2 Different Thickness of IGZO 17 4-2 Material Analysis 20 4-2-1 X-ray Diffraction 20 4-2-2 Atomic Force Microscopy 22 4-2-3 Scanning Electron Microscope 25 4-2-4 Electron Spectroscopy for Chemical Analysis 26 4-2-5 Ellipsometry 33 4-2-6 Transmission Electron Microscopy 34 4-2-7 Photoluminescence Spectrometer 37 4-3 Metal Oxide Thin Film Transistors 38 4-3-1 DC characteristics 38 4-3-2 Spectral Response Measurement 41 Chapter 5 Conclusion and Future Work 45 5-1 Conclusion 45 5-2 Suggestions for Future Work 46 References 47

    [1] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp.488-492, Nov. 2004.
    [2] Hsiao-Wen Zan, Wei-Tsung Chen, Hsiu-Wen Hsueh, Shih-Chin Kao, Ming-Che Ku, Chuang-Chuang Tsai, and Hsin-Fei Meng, “Amorphous indium-gallium-zinc-oxide visible light phototransistor with a polymeric light absortion layer,” Applied Physics Letters 97, 203506 (2010).
    [3] Sungmi Yoo, Jun-Young Yoon, Juwhan Ryu, Yun Ho Kim, Jae-Won Ka, Mi Hye Yi, Kwang-Suk Jang, “Low-temperature-annealed alumina/polyimide gate insulators for solution-processed ZnO thin-film transistors,” Applied Surface Science 313 (2014) 382–388.
    [4] H. F. H. Faber, M. Klaumunzer, M. Voigt, D. Galli, B. F. Vieweg, W. Peukert, E. Spiecker, M. Halik, Nanoscale 2011, 3, 897.
    [5] Keunkyu Song, Chang Young Koo, Taehwan Jun, Daehee Lee, Youngmin Jeong, Jooho Moon, “Low-temperature soluble InZnO thin film transistors by microwave annealing,” Journal of Crystal Growth 326 (2011) 23–27.
    [6] Han Wang, Wangying Xu, Shuang Zhou, Fangyan Xie, Yubin Xiao, Lei Ye, Jian Chen, and Jianbin Xu, “Oxygen plasma assisted high performance solution-processed Al2Ox gate insulator for combustion-processed InGaZnOx thin film transistors,” Journal of Applied Physics 117, 035703 (2015).
    [7] E. Fortunato,* P. Barquinha, and R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances, ” Advanced Material 2012, 24, 2945–2986.
    [8] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 4, pp. 996-1000, 2011..
    [9] P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, “Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process,” Science and Technology of Advanced Material., vol. 6, pp. 352–358, 2005.
    [10] W. C. Ou, “Enhanced performances of GaN-based MOS-HEMTs by surface passivation and post oxide annealing,” Institute of Microelectronics, National Cheng-Kung University, pp. 1-103, 2013.
    [11] Kwok K. NG, “Complete guide to semiconductor devices 2nd edition,” Wiley-IEEE Press, pp.177-180, July 2002.
    [12] http://inderjitsingh87.weebly.com
    [13] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, pp. 996-1000, 2011.
    [14] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sensors J., vol. 11, pp. 999-1003, 2011.
    [15] Y.Y. Li, “Investigation of Metal Oxide Thin Film Transistors,” Institute of Microelectronics, National Cheng-Kung University, pp. 13, 2016.
    [16] H. Y. Liu, W. C. Hsu, B. Y. Chou, Y. H. Wang, W. C. Sun, S. Y. Wei, and S. M. Yu, “Al2O3 passivation layer for InGaN/GaN LED deposited by ultrasonic spray pyrolysis,” IEEE Photon. Technol. Lett., vol. 26, pp. 1243-1246, 2014.
    [17] Center for micro/nano science and technology, NCKU.
    [18] C.Y. Ho, Y.J. Chang, “Effects of various gate materials on electrical degradation of α-Si:H TFT in industrial display application” Solid-State Electronics, vol. 116, pp.130-134, Feb. 2016

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE