簡易檢索 / 詳目顯示

研究生: 陳相宇
Cheng, Xiang-Yu
論文名稱: 具新型雙重諧振槽之同步整流零電壓切換直流電能轉換器
A Novel Dual Resonant Tank for ZVT DC-DC Converters with Synchronous Rectifier
指導教授: 楊宏澤
Yang, Hong-Tzer
共同指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 64
中文關鍵詞: 零電壓切換零電壓轉移同步整流反向恢復時間零電流切換
外文關鍵詞: Zero-voltage-switching, Zero-voltage-transition, Synchronous rectifier, Reverse recovery time, Zero-current-switching
相關次數: 點閱:143下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直流對直流電能轉換器被廣泛運用於工業界,因應未來應用需求,電能轉換器必須具更高之效率與輸出功率。然而傳統直流對直流電能轉換器受限於切換損失與導通損失,導致效率無法獲得進一步提升。因此,本論文乃著重於減少傳統直流對直流電能轉換器之切換與導通損失。研究方法包括使用同步整流、零電壓切換、零電流切換技術,以及減少功率開關接面二極體之反向恢復時間。本文於既有電路架構中推導出一新型雙重諧振槽之同步整流零電壓切換直流電能轉換器,並透過實作一輸入電壓80伏,輸出電壓30伏、具200瓦功率輸出之雛型電路以驗證本文所提理論結果。根據模擬與實驗結果證實,本文所提出之新型雙重諧振槽不僅可應用於傳統直流對直流電能轉換器,且相對於既有架構具有更好之表現。

    DC-DC converters, widely used in industry, are much more needed to supply higher power with higher efficiency in applications. However, the conventional DC-DC converters cannot achieve higher efficiency owing to the switching and conduction losses. Thus, this thesis aims at reducing the conduction and switching losses of conventional DC-DC converters by using Synchronous Rectification (SR), zero-voltage-switching (ZVS), zero-current-switching (ZCS) and reduced reverse recovery time of junction diodes. A novel dual resonant tank for DC-DC converters with SR is proposed on the basis of existing topologies. To verify the proposed circuit, a 200 W prototype converter, with input voltage 80V and output voltage 30V, is implemented in this thesis. The simulated and experimental results obtained have demonstrated that the proposed dual resonant tank can be practically implemented in conventional DC-DC converters to provide better performance as compared with existing topologies.

    ABSTRACT I 摘 要 III 誌 謝 IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1. INTRODUCTION 1 1.1. Background and Motivations 1 1.2. Review of Literature 2 1.3. Research Method 3 1.4. Contribution of the Thesis 4 1.5. Organization of the Thesis 6 CHAPTER 2. EXISTING ZVT DC-DC CONVERTERS 8 2.1. Introduction 8 2.2. Types for ZVT in DC-DC Converters 9 2.2.1. Type A - Switched Auxiliary Voltage Sources 9 2.2.2. Type B - Constant Auxiliary Voltage Source 10 2.2.3. Type C - ZVT Resonant Tank 12 2.3. Comparisons of the Three ZVT Types 13 2.4. ZVT Converters with SR 15 2.4.1. Type B ZVT Buck Converters with SR 15 2.4.2. Type C ZVT Buck Converter with SR 16 2.5. Summary 16 CHAPTER 3. PROPOSED NOVEL DUAL RESONANT TANK 18 3.1. Introduction 18 3.2. Operating Principles of the Proposed Dual Resonant Tank 18 3.3. Design of the Proposed Resonant Tank 31 3.4. Summary 39 CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS 41 4.1. Introduction 41 4.2. Description of Test Circuits 41 4.3. Circuit Implementation 42 4.4. Simulation Results 43 4.5. Experimental Results 48 4.6. Comparisons with the Existing Methods 52 4.7. Efficiency Measurements 53 4.8. Temperature Measurements 56 4.9. Summary 58 CHAPTER 5. CONCLUSIONS AND FUTURE PROSPECTS 60 5.1. Conclusions 60 5.2. Future Expectations 61 REFERENCES 62

    [1] E. Adib and H. Farzanehfard, "Family of isolated zero-voltage transition PWM converters," IET Power Electron., vol. 1, no. 1, pp. 144-153, 2008.
    [2] H. Mao, O. Abdel Rahman, and I. Batarseh, "Zero-Voltage-Switching DC-DC Converters With Synchronous Rectifiers," IEEE Trans. Power Electron., vol. 23, no. 1, pp. 369-378, Jan, 2008.
    [3] M. L. Martins, J. L. Russi, and H. L. Hey, "Zero-voltage transition PWM converters: a classification methodology," Proc. Inst. Electr. Eng.—Electr. Power Appl., vol. 152, no. 2, pp. 323-334, Mar. 4, 2005.
    [4] M. L. Martins, J. L. Russi, and H. L. Hey, "Novel design methodology and comparative analysis for ZVT PWM converters with resonant auxiliary circuit," IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 779-796, May/Jun, 2006.
    [5] E. Adib and H. Farzanehfard, "Zero-Voltage-Transition PWM Converters With Synchronous Rectifier," IEEE Trans. Power Electron., vol. 25, no. 1, pp. 105-110, Jan, 2010.
    [6] G. Hua, C. S. Leu, Y. Jiang, and F. C. Lee, "Novel zero-voltage-transition PWM converters," IEEE Trans. Power Electron., vol. 9, no. 2, pp. 213-219, Mar, 1994.
    [7] W. Huang and G. Moschopoulos, "A new family of zero-voltage-transition PWM converters with dual active auxiliary circuits," IEEE Trans. Power Electron., vol. 21, no. 2, pp. 370-379, Mar, 2006.
    [8] W. Huang, X. Gao, S. Bassan, and G. Moschopoulos, "Novel dual auxiliary circuits for ZVT-PWM converters," IEEE Trans. Electrical and Computer Engineering, vol. 33, no. 3, pp. 153-160, 2008.
    [9] L. Yang and C. Q. Lee, "Analysis and design of boost zero-voltage-transition PWM converter," in Proc. IEEE APEC, 1993, pp. 707-713.
    [10] B. R. Lin, C. E. Huang, K. Huang, and D. Wang, "Design and implementation of zero-voltage-switching flyback converter with synchronous rectifier," Proc. Inst. Electr. Eng.—Electr. Power Appl., vol. 153, no. 3, pp. 420-428, 2006.
    [11] Y. Xi, P. K. Jain, and G. Joos, "A zero voltage switching flyback converter topology," in Proc. IEEE PESC, 1997, pp. 951-957.
    [12] Y. Xi, P. K. Jain, G. Joos, and L. Yan Fei, "An improved zero voltage switching flyback converter topology," in Proc. IEEE PESC, 1998, pp. 923-929.
    [13] Y. Xi and P. K. Jain, "A forward converter topology employing a resonant auxiliary circuit to achieve soft switching and power transformer resetting," IEEE Trans. Ind. Electron., vol. 50, no. 1, pp. 132-140, Feb, 2003.
    [14] C. A. Munoz B, "Study of a new passive lossless turn-off snubber," in Proc. CIEP Conf., 1998, pp. 147-152.
    [15] K. M. Smith, Jr. and K. M. Smedley, "Engineering design of lossless passive soft switching methods for PWM converters. I. With minimum voltage stress circuit cells," IEEE Trans. Power Electron., vol. 16, no. 3, pp. 336-344, May, 2001.
    [16] K. M. Smith, Jr. and K. M. Smedley, "Engineering design of lossless passive soft switching methods for PWM converters. II. With nonminimum voltage stress circuit cells," IEEE Trans. Power Electron., vol. 17, no. 6, pp. 864-873, Nov, 2002.
    [17] E. Adib and H. Farzanehfard, "Family of Soft-Switching PWM Converters With Current Sharing in Switches," IEEE Trans. Power Electron., vol. 24, no. 4, pp. 979-984, Apr, 2009.
    [18] R. T. H. Li and H. S. H. Chung, "A Passive Lossless Snubber Cell With Minimum Stress and Wide Soft-Switching Range," IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1725-1738, July, 2010.
    [19] N. Mohan, T. M. Undeland, and W. P. Robbin, Power Electronics, Third ed. New York: John Wiely&Sons Inc., 1995.
    [20] M. K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters. New York: John Wiley & Sons Inc., 2008.
    [21] B. Bletterie, R. Bründlinger, and H. Häberlin, "Redefinition of the European efficiency - finding the compromise between simplicity and accuracy," in 23th European photovoltaic solar energy Conf., Valencia, 2008.

    下載圖示 校內:2015-08-26公開
    校外:2015-08-26公開
    QR CODE