| 研究生: |
楊久慶 Yang, Chiu-Ching |
|---|---|
| 論文名稱: |
利用噴墨技術製作熱電薄膜應用於矽太陽能電池之研究 A study of thermoelectric thin-film by ink-jet printing for silicon solar cell application |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 水熱法 、噴印塗佈 、鉍碲 、鉍銻碲 |
| 外文關鍵詞: | hydrothermal process, ink-jet printing, Bi2Te3, Bi0.5Sb1.5Te3 |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用水熱法製備鉍碲和鉍銻碲粉末,藉由分散實驗比對中,於粉末添加適當溶劑後用來塗佈成膜,並利用不同成膜方式比較其熱電特性,其材料分析上利用EDS對於粉末與薄膜進行成分分析;使用X光粉末繞射儀針對其結構及結晶性進行分析並觀察是否有雜相的存在;使用掃描式電子顯微鏡觀察微結構及緻密性;原子力顯微鏡分析在不同熱處理持溫時間下之粗糙度。
實驗結果得知粉末在180℃且NaBH4加入為Te莫耳數的4倍後,即可發現EDS比例相當接近所要的組成比,從XRD中發現無雜相的存在。藉由溫度180℃與時間48小時合成條件下,有助於主peak強度的提升與結晶性較好。接著由沉降實驗中可對比出粉末於水中分散效果較佳,且其加入分散劑後差異不大。後續利用粉末加入水後塗佈成膜,藉由旋轉塗佈與噴印塗佈不同方式比較其熱電特性,並且調整噴印機台之參數以求得較穩定的液滴現象去塗佈成膜。運用旋轉塗佈成膜方式鉍碲薄膜經熱處理500℃ 7分鐘下,功率因子為0.055,鉍銻碲在同樣熱處理條件下功率因子為1.868。後來由噴印塗佈成膜方式鉍碲薄膜經熱處理500℃ 9分鐘下,功率因子改善為1.576,鉍銻碲在同樣熱處理條件下功率因子也提升至4.05,且其薄膜也較為平坦。最後將熱電薄膜整合於矽太陽能電池提升0.577發電效率。
The experiment applied hydrothermal process to synthesize Bi2Te3 and Bi0.5Sb1.5Te3 powders. By dispersing the powders in different kinds of solvents, we could observe the precipitation phenomenon, and then chose the solvent suitable for thin film coating by spin coating and ink-jet printing. Finally, we compared the two coating processes and studied the influence on the thermoelectric property. Energy dispersive spectroscopy (EDS) was used to estimate the composition of the powders and thin films. The crystal structure and second phases of the powders and thin films were identified by powder x-ray diffraction (XRD). The microstructure was observed by scanning electron microscope (SEM) and atomic force microscope (AFM), and the compactness of the films was also characterized at different annealing temperature.
Based on the EDS results, when the concentration of NaBH4 was four times the concentration of Te, the composition of powders would be close to the stoichiometry of Bi2Te3 and Bi0.5Sb1.5Te3 at the synthesizing temperature of 180℃. The XRD data showed no second phase existed. Annealing at the temperature of 180℃ for 48 hours, could improve the crystallinity of the powders. Through dispersing the powders into different kind of solvents, we found that water was the most suitable solvent for Bi2Te3 and Bi0.5Sb1.5Te3 powders. The influence of adding dispersing agent into the solvent for assisting dispersion was not apparent. By adjusting the parameters of the ink-jet printer, the thin films can be coated in a stable condition and thus having a better quality. The power factor of Bi2Te3 and Bi0.5Sb1.5Te3 thin films coated by spin coating at 500℃ for 7 minutes was 0.055 and 1.868, respectively. However, the power factor of Bi2Te3 and Bi0.5Sb1.5Te3 thin films coated by ink-jet printing at 500℃ for 9 minutes were 1.576 and 4.05, respectively. From the AFM analysis, the thin films coated by ink-jet printing is much flatter than that by spin coating. Finally, we combine the thermoelectric generator with silicon solar cell and get a 0.577% raise in the efficiency.
1. H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen, Journal of Crystal Growth. 265, 558–562, 2004.
2. X.B. Zhaoa, X.H. Ji, Y.H. Zhang, B.H. Lu, Journal of Alloys and Compounds. 368, 349–352, 2004.
3. Ya Jianga, Ying-Jie Zhu, Journal of Crystal Growth, 306, 351–355, 2007.
4. Chuangui Jin, Xiaoqiang Xiang, Chong Jia, Weifeng Liu, Weili Cai, Lianzeng Yao, Xiaoguang Li, J. Phys. Chem. B. 108, 1844-1847, 2004.
5. Y.Y. Zheng, T.J. Zhu, X.B. Zhao, J.P. Tu, G.S.Cao, Materials Letters, 59, 2886 – 2888, 2005.
6. Xinfeng Tang, Wenjie Xie, Han Li, Wenyu Zhao, and Qingjie Zhang , APPLIED PHYSICS LETTERS , 90, 2007.
7. Massoud Kaviany, “Principles of Heat Transfer”, John Wiley & Sons, 2001.
8. 蘇家弘,“高溫電阻暨熱電力同時即時量測系統的建立與熱壓處理之碲化鉍熱電性質之探討”,民93年。
9. Stecker, K., Submann, H., Eichler, W., Heiliger, W., and Stordeur, M., Wiss. Z. Univ. Halle (Germany), 27, 5, 1978.
10. loffe, A.,Physik der Halbleiter, Akademie-Verlag, Berlin, 272, 1960.
11. Heiliger, W., Thesis MLU, Halle (Germany), 1980.
12. Kuchler, M., Thesis MLU, Halle (Germany), 1984.
13. Stordeur, M. and Sobotta, H., in Proc. First European Conf. onThermoelectrics, Rowe, D. M., Ed.,IEE Materials & DevicesSer. 7, P. Peregrinus Ltd., London, 209, 1988.
14. 劉君愷, 熱電技術發展現況,材料世界網 www.materialsnet.com.tw
15. Lange, P. W., Naturwissenschaften, 27, 133, 1939.
16. Francombe, M. H., Br. J. Appl. 9, 415, 1958.
17. Brebrick, R. F., J. Appl. Crystallogr., 1, 241, 1968.
18. Wiese, J. R. and Muldawer, L., J. Phys. Chem. Solids, 15, 13, 1960.
19. Drabble, J. R. and Goodman, C. H. L., J. Phys. Chem. Solids,5, 142, 1958.
20. Jenkins, J. 0., Rayne, J. A., and Ure, R. W., Phys. Rev. B, 5,3171,1972.
21. Wagner, V., Dolling, G. Powell, B. M., and Landwehr, G.,Phys. Status Solidi (b), 85, 311, 1978.
22. Thuler, M. R.. Benbow, R. L., and Hurych, Z., Chem. Phys.,71, 265, 1982.
23. Kullmann, W., Geurts, J., Richter, W. et al., Phys. Status Solidi (b), 125, 131, 1984.
24. Semiletov, S. A., Kristallografiya, 1, 403, 1956.
25. Shunk, F. A., Constitution of Binary Alloys, second supplement, McGraw-Hill, New York, 1969.
26. Smith, M. S., Knight, R. S., and Spencer, C. W.. J. Appl. Phys., 33, 7, 1962.
27. Testardi, L. R. and Wiese, J. R., Trans. Met. Soc. AIME, 221,1961.
28. Thaddeus B. M., Binary Alloy phase diagrams, ASM International, 1990.
29. Caillat, T., Carle, M., Perrin, D., Scherrer, H., and Scherrer, S., J. Phys. Chem. Solids, 53, 227, 1992.
30. Smith, M. J., Knight, R. J., and Spencer, C. W.,J. Appl. Phys., 33, 7, 1962.
31. Abrikosov, N. Kh. and Poretskaya, L. V., Izv. Akad. Nauk SSSR Neorg. Mater., 1, 503, 1965.
32. Basr, R., CALPHAD, 2, 113, 1978.
33. Cholinski, J., Lasocka, M., and Matyja, H., Rev. Phys. Appl., 12, 1, 1977.
34. Steininger, J., J. Appl. Phys., 41, 6, 1970.
35. Caillat, T., Carle, M., Perrin, D., Scherrer, H., and Scherrer, S., J. Phys. Chem. Solids, 53, 227, 1992.
36. Gaillard, L., doctoral thesis, Nancy, 1989.
37. Castanet, R., Bergman, C., and Mathieu, J. C., CALPHAD, 3, 205, 1979.
38. Scherrer, H., Weber, S., phys. Lett. A, 77, 189, 1980.
39. 黃坤祥,“粉末冶金學”,再版,民92 年
40. Yuan Deng, Ce-Wen Nan, Lin Guo , Chemical Physics Letters, 383, 572-576, 2004.
41. Yuan Deng, Chang-Wei Cui, Ni-La Zhang, Tian-Hao Ji, Qing-Lin Yang , Lin Guo, Solid State Communications, 138, 111-113, 2006.
42. Yuan Deng, Xi-song Zhou, Guo-dan Wei, Jing Liu, Ce-Wen Nan, Shu-jing Zhao,Journal of Physics and Chemistry of Solids, 63, 2119-2121, 2002.
43. H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen , Journal of Crystal Growth, 265, 558-562, 2004.
44. 王富强,陈 晖,成 艳,王 忠,朱 磊,简旭宇 , 動能材料, 38, 2007.
45. D.L.Simth, Chap10 Film Analysis, Thin Film Deposition, McGraw-Hill, New York, USA, 1995.
46. 汪建民,材料分析,1st ed.中國材料科學學會,新竹,1998.
47. 林麗娟, X光繞射原理及其運用, 工業材料, 86, 101, 1994.
48. A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, A mechanical microscope: High-speed atomic force microscopy, Applied Physic Letters, 86, 034106 2005.
49. 吳鉉忠,壓電式微液滴噴射數學模擬系統之開發與實驗研究,國立成功大學材料科學及工程學系博士論文. 2004.
50. C.W.Hansell,” Measuring Instrument of Recording Type ”, U.S.Patent 2,512,743, 6, 27, 1950.
51. N. Bugdayci, D. B. Bogy, F. E. Talke, “Axisymmetric Motion of Radially Polarized Piezoelectric Cylinders Used in Ink Jet Printing”, IBM J. Res. Develop., 27, no. 2, 171-180, 1983.
52. H.T. Zhang, X.G. Luo, C.H. Wang, Y.M. Xiong, S.Y. Li, X.H. Chen , Journal of Crystal Growth, 265, 558-562, 2004.
53. 王富强,陈 晖,成 艳,王 忠,朱 磊,简旭宇 , 動能材料, 38, 2007
54. Deng Y, Cui C W, Zhang N L, et al. [J]. Solid State Communications, 138, l 11-113, 2006
55. H. Noro, K. Sato and H. Kagechika, “The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering” Journal of Applied Physics, 73, 1252, 1993.
56. Dong-Hwan Kim, Tadaoki Mitani , Journal of Alloys and Compounds, 399, 14–19, 2005.
57. DORIANE DEL FRARI, SEBASTIEN DILIBERTO*, Journal of Applied Electrochemistry, 36, 449-454, 2006.
58. 林建樺,“擠壓管式壓電制動噴墨頭之微液滴噴射行為動力分析研究”,民94年。