簡易檢索 / 詳目顯示

研究生: 林計德
Lin, Ji-De
論文名稱: 結合GPS與磁力/加速度感測元件於導航之研究
Navigation Based on the Integration of GPS, Magnetometer, and Accelerometer
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 56
中文關鍵詞: 加速規磁力計感測器之校正全球衛星導航
外文關鍵詞: GPS, Navigation, Accelerometer, Sensor calibration, Magnetometer
相關次數: 點閱:75下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全球衛星定位系統 (GPS) 已被廣泛應用於汽車、行人之導航,其缺點為衛星訊號易受遮蔽效應影響,導致GPS定位不精確甚至失效,故近年來許多科學家極力尋找他法補償GPS之缺點。本論文即致力於此,期望能以GPS/Magnetometer/Accelerometer之硬體架構為基礎,發展一結合磁力計與加速規量測量之演算法,估算導航位置解,用以輔助GPS,使GPS即使處於無法正常工作之空窗期,導航系統仍能保持定位精準度,如此將使導航系統更具強健性。另一方面,磁力計與加速規易受環境干擾而導致其特性產生些微變化,且一旦使用時間過長,會受長期漂移量之影響,故為了使磁力計與加速規永遠有效地發揮功用,本論文也致力於發展一校正法則,期望能採用GPS所提供之資訊使感測器進行自我校正之工作。

    GPS (Global position system) has been applied widely in vehicle and personal navigation. GPS, however, is subject to multipath and blockage in urban and indoor environments. One method to account for this limitation is to employ inertial sensors to augment the GPS. In the thesis, a low-cost magnetometer/accelerometer is used to fuse GPS data for navigation. The QUEST algorithm is used to process accelerometer and magnetometer data so that the attitude can be estimated. Accordingly, the gap in GPS positioning can be filled by using magnetometer/accelerometer data. Furthermore, the GPS data are used to calibrate magnetometer/accelerometer on line as the latter is subject to drifting effect. A calibration approach will be developed in order to ensure a bounded navigation error.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機與方法 1 1.3. 文獻回顧 2 1.4. 論文架構 3 第二章 GPS/Motion Sensors 整合式導航之架構 4 2.1. GPS/Motion sensors之架構 4 2.2. 實驗平台 5 2.3. 座標系統之定義 6 2.3.1. ENU座標系統 6 2.3.2. 感測器之體座標系統 6 2.4. 座標系統之轉換 7 2.4.1. 尤拉角之姿態轉換矩陣 7 2.4.2. g體座標與a體座標之姿態轉換矩陣 9 2.4.3. 四元素與姿態矩陣之定義與運算 10 第三章 姿態估測演算法與感測器之校正 13 3.1. Cross method 13 3.1.1. Initial attitude 14 3.1.2. 姿態轉換矩陣之更新 22 3.2. Wahba’s problem 23 3.2.1. Singular value decomposition method (SVD) 25 3.2.2. Danvenport’s q method 27 3.2.3. QUEST method 28 3.3. 實驗與驗證結果 29 3.3.1. 定點量測之實驗 29 3.3.2. 行人路測之實驗 31 3.3.3. 汽車之市區路測實驗 33 3.3.4. 小結 35 第四章 感測器之校正 37 4.1. 數學模型之建立 37 4.1.1. 磁力計之數學模型 37 4.1.2. 加速規之數學模型 40 4.2. 感測器之校正 42 4.2.1. Least square estimate 42 4.2.2. Recursive least square algorithm 46 4.2.3. 實驗與驗證結果 47 第五章 結論與未來工作 52 5.1. 結論 52 5.2. 未來工作 52 參考文獻 54

    [1] E. K. P. Chong and S. H. Zak, An Introduction to Optimation, 2nd edition, New York, John Wiley & Sons, 2001.
    [2] D. J. Gouws and E. F. Van der Merwe, “The Implementation of a Magnetic Sensor on a Dynamic Platform,” Proceedings of the Republic of South Africa Ballistics Symposium, Lyttelton, Pretoria, 6-7 August 2003.
    [3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, UK, Cambridge University Press, 1985.
    [4] IEEE Std Specification Format Guide and Test Procedure for Single-Axis Laser Gyros, Annex B, Dynamic and Stochastic Modeling Overview.
    [5] IEEE Std Specification Format Guide and Test Procedure for Linear, Single-Axis, Digital, Torque-Balance Accelerometer, Annex A, Accelerometer Dynamic Block Diagram.
    [6] F. L. Markley, “Attitude Determination Using Vector Observations and the Singular Value Decomposition,” Journal of the Astronautical Sciences, Vol. 36, No. 3, pp. 245-258, July-September 1988.
    [7] F. L. Markley, “Attitude Determination using Vector Observations: A Fast Optimal Matrix Algorithm,” Journal of the Astronautical Sciences, Vol. 41, No. 2, pp.261-280, April-June 1993.
    [8] F. L. Markley and D. Mortari, “New Developments in Quaternion Estimation from Vector Observations,” Proceedings of the Richard H. Battin Astrodynamics Symposium Conference, Texas A&M University, Collage Station, TX, Vol. 106, pp.373-393, 20-21 March 2000.
    [9] D. Mortari, “Euler-q Algorithm for Attitude Determination from Vector Observations,” Journal of Guidance, Control, and Dynamics, Vol. 2, No. 2, pp. 328-334, March-April 1998.
    [10] D. Roetenberg, H. J. Luinge, C. T. M. Baten, and P. H. Veltink, “Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensor of Human Body Segment Orientation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol.13, No.3, pp.395-405, September 2005.
    [11] G. Retscher, “Location Determination in Indoor Environments for Pedestrian Navigation,” 2006 IEEE/ION Position, Location, and Navigation Symposium, pp. 547-555, 25-27 April, 2006.
    [12] M. D. Shuster and S. D. Oh, ”Three-Axis Attitude Determination from Vector Observations,” Journal of Guidance and Control, Vol. 4, No. 1, pp. 70-77, January-February 1981.
    [13] M. D. Shuster, “A Suboptimal Algorithm for Attitude Determination from Multiple Star Cameras,” AAS/AIAA Space Flight Mechanics Meeting, Belleview Biltmore Resort & Spa Clearwater, Florida, 23-26 January, 2000.
    [14] M. J. Sidi, Spacecraft Dynamics and Control, Cambridge University Press, 1997.
    [15] T. Soderstrom and P. Stoica, System Identification, New York, Prentice Hall, 1989.
    [16] A. Wagli and J. Skaloud, “Turning Point Trajectory Analysis for Skiers,” Inside GNSS, pp.24-34, Spring 2007.
    [17] G. Wahba, “A Least Squares Estimate of Spacecraft Attitude,” SIAM Review, Vol. 7, No. 3, pp. 409, July 1965.
    [18] J. R. Wertz, Spacecraft Attitude Determination and Control, Springer, 1978.
    [19] X. Yun and E. Bachmann, “Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Transactions on Robotics, Vol. 22, No. 6, pp.1216-1227, December 2006.
    [20] 莊智清,黃國興,電子導航,全華科技圖書股份有限公司,2001。
    [21] 陳明豐,低軌道衛星姿態估測演算法,國立台灣大學電機工程學系碩士論文,2002。
    [22] 吳世驊,皮米級衛星姿態控制次系統之設計與實現,國立成功大學電機工程學系碩士論文,2006。

    下載圖示 校內:2010-08-17公開
    校外:2012-08-17公開
    QR CODE