簡易檢索 / 詳目顯示

研究生: 王政傑
Wang, Cheng-Chieh
論文名稱: 光能獵能系統及其測試環境建置
Light-Energy-Harvesting System and Its Test Environmental Setup
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 87
中文關鍵詞: 光能獵能系統光能獵能器直流直流降壓轉換器測試環境建置展示箱
外文關鍵詞: light-energy-harvesting system, light-energy harvester, DC-DC buck converter, test environmental setup, demonstration box
相關次數: 點閱:128下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 移動裝置及無線感測器近年發展快速且未來將會更廣泛被使用,為了延長移動裝置及無線感測器的電池使用時間及滿足嚴苛的負載需求,需要高效率、快速響應的電源管理積體電路。透過將光伏模組與該些應用整合之光能獵能是一方法更進一步,延長電池使用時間或甚至使其能源自主,形成一光能獵能系統。
    為了檢驗光能獵能系統的效能表現,光伏模組及光能獵能器皆須被測試及量測,太陽能陣列模擬器及太陽光能模擬器為普遍使用的儀器,以準確及多功能為特色,然而很貴重且難以攜帶。此論文提出一測試環境建置,以一展示箱及其周邊配件建置室外及室內光源之環境,其可調的光源功率密度涵蓋廣泛的應用範圍,此展示箱能以足夠的精準度、較低成本及更佳的可攜性來測試及量測光伏模組及光能獵能器。為了驗證此展示箱的可行性,此論文互相比較以不同方式量測光伏模組及光能獵能器之結果,並說明量測結果間的差異。
    提出之展示箱以足夠的均勻度模擬室外光源之功率密度從0到1,999W/m2,模擬室內光源之功率密度從0到20,000 lux,此外,它僅佔20cm × 20cm × 20cm的大小,重量輕,方便攜帶。另一方面,此論文之光能獵能系統包含一光能獵能器及一直流直流降壓轉換器,從先前文獻採用之光能獵能器在快速照度變化的情況下具高效率及快速暫態響應,採用以電流態控制及快速負載暫態響應技術之直流直流降壓轉換器則以較低之電感值重新設計以使負載暫態響應更進步。

    Mobile devices and wireless sensor nodes (WSNs) have been rapidly developed in recent years and will get used much more widely in the future. To extend battery usage time of mobile devices and WSNs and to meet their strict load demand, high-efficiency and fast-transient power management IC is needed. Light-energy harvesting is an elegant solution by integrating photovoltaic (PV) devices into such applications to further extend battery usage time or even make them autonomous, forming a light-energy-harvesting system.
    To examine the performance of the light-energy-harvesting system, both PV devices and light-energy harvesters should be tested and measured. Solar array simulator (SAS) and solar simulators are widely used instruments with accurate and multifunctional feature. Still, they are expensive and hard to carry. In this thesis, test environmental setup is proposed using a demonstration box with peripheral components to setup both outdoor- and indoor-light environment with controllable power density of the light sources within wide application range. The demonstration box can be used to test and measure PV devices and light-energy harvesters with enough accuracy, lower cost, and better portability. To verify its availability, measurement result of PV devices and light-energy harvester using different ways are compared to each other with elaborated reasons for measurement differences.
    The proposed demonstration box models outdoor-light condition with power density from 0 to 1,999W/m2 and models indoor-light condition with power density from 0 to 20,000 lux with enough uniformity. In addition, it only occupies size of 20cm × 20cm × 20cm with very-light weight, featuring great portability. On the other hand, the light-energy-harvesting system in this thesis contains a light-energy harvester and a DC-DC buck converter. The adopted light-energy harvester from previous work features high efficiency and fast-transient response under fast-irradiance-changing condition. The DC-DC buck converter employing current-mode control and fast load-transient technique is re-designed with lower inductance to further improve the load-transient response.

    摘要 I Abstract II Acknowledgement III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 4 Chapter 2 Light-Energy-Harvesting System 6 2.1 Selection of Converter Architecture 6 2.1.1 Introduction to Two-Stage Power Converters with Two Inductors 6 2.1.2 Introduction to SIDIDO Converters 7 2.1.3 Comparison of the Converter Architectures 11 2.2 Adoption of Fast-Tracking Light-Energy Harvester 16 2.2.1 Equivalent Model and Characteristics of Photovoltaic Device 16 2.2.2 Methods of Maximum Power Point Tracking 18 2.2.3 Adaptive Load-Line Tuning Technique 20 2.3 Adoption of Fast-Transient DC-DC Buck Converter 21 2.3.1 Fundamental of DC-DC Buck Converter 22 2.3.2 Design with Voltage-Setting Control Technique 31 Chapter 3 Test Environmental Setup 39 3.1 Fundamental of Light-Energy Harvesting 39 3.1.1 Introduction and Selection of Light Sources 39 3.1.2 Introduction and Selection of Photovoltaic Device Materials 45 3.2 Battery Protection Circuit 49 3.3 Environmental Setup 54 3.3.1 Solar Array Simulator 54 3.3.2 Customized Demonstration Box and Peripheral Components 55 Chapter 4 Measurement Result 63 4.1 Photovoltaic Device Characteristics 63 4.1.1 Outdoor PV Panel 63 4.1.2 Indoor PV Panel 67 4.1.3 Comparison of MPP Locus Slope 71 4.2 Light-Energy Harvester 73 Chapter 5 Conclusion and Future Work 81 5.1 Conclusion 81 5.2 Future Work 82 Reference 83

    [1] H. Shao, X. Li, C.-Y. Tsui, and W.-H. Ki, “A novel single-inductor dual-input dual-output DC-DC converter with PWM control for solar energy harvesting system,” IEEE Trans. Very Large Scale (VLSI) Syst., vol. 22, no. 8, pp. 1693-1704, Aug. 2014.
    [2] S. Beeby and N. White. (2010). Energy Harvesting for Autonomous Systems. Norwood, MA: Artech House.
    [3] A. T. Garelli, D. C. Mathew, T. W. Wilson, Jr., K. J. Hendren, P. K. Augenbergs, B. W. Degner, B. J. Hamel, M. A. Damlanakis, and P. Kessler, “Electronic device display module,” U.S. Patent 8 638 549, Jan. 28, 2014.
    [4] M. N. Rosenblatt, B. Lyon, J. B. Filson, S. P. Hotelling, G. Cameron, and C. Frazier, “Integrated touch sensor and solar assembly,” U.S. Patent 8 368 654, Feb. 5, 2013.
    [5] W.-C. Liu, Y.-H. Wang, and T.-H. Kuo, “An adaptive load-line tuning IC for photovoltaic module integrated mobile device with 470μs transient time, over 99% steady-state accuracy and 94% power conversion efficiency,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 70-71.
    [6] Y.-H. Lee, S.-J. Wang, and K.-H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829–838, Apr. 2010.
    [7] F. Su and W.-H. Ki, “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 446-447.
    [8] S.-H. Chien, T.-H. Hung, S.-Y. Huang, and T.-H. Kuo, “A monolithic capacitor-current-controlled hysteretic buck converter with transient-optimized feedback circuit,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2524-2532, Nov. 2015.
    [9] P. Y. Wu and P. K. T. Mok, “A monolithic buck converter with near-optimum reference tracking response using adaptive-output-feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2441-2450, Nov. 2007.
    [10] C.-Y. Hsieh and K.-H. Chen, “Adaptive pole-zero position (APZP) technique of regulated power supply for improving SNR,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2949–2963, Jun. 2008.
    [11] R. J. M. Vullers, R. van Schaijk, H. J. Visser, J. Penders, C. Van Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid State Circuits Mag., vol. 2, no. 2, pp. 29–38, Feb. 2010.
    [12] P.-Y. Wang, S.-Y. Huang, K.-Y. Fang, and T.-H. Kuo, “An Undershoot/Overshoot-Suppressed Current-Mode Buck Converter with Voltage-Setting Control for Type-II Compensator,” in IEEE Asian Solid-State Circuits Conf. (ASSCC), 2015, pp. 1-4.
    [13] A. Shrivastava, Y. K. Ramadass, S. Khanna, S. Bartling, and B. H. Calhoun, “A 1.2μW SIMO energy harvesting and power management unit with constant peak inductor current control achieving 83-92% efficiency across wide input and output voltages,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1-2.
    [14] S. Bandyopadhyay and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sep. 2012.
    [15] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, “A 400 nW single-inductor dual-input–tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2758-2772, Nov. 2015.
    [16] S. Kim and G. A. Rincón-Mora, “Dual-source single-inductor 0.18μm CMOS charger-supply with nested hysteretic and adaptive on-time PWM control,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 400-401.
    [17] R. D. Prabha and G. A. Rincón-Mora, “0.18-μm light-harvesting battery-assisted charger-supply CMOS system,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2950-2958, Apr. 2016.
    [18] H.-J. Chen, Y.-H. Wang, P.-C. Huang, and T.-H. Kuo, “An energy-recycling three-switch single-inductor dual-input buck/boost DC-DC converter with 93% peak conversion efficiency and 0.5 mm2 active area for light energy harvesting,” in IEEE ISSCC Dig. Tech. Papers, 2015, pp. 374–375.
    [19] Y.-H. Wang, Y.-W. Huang, P.-C. Huang, H.-J. Chen, and T.-H. Kuo, “A single-inductor dual-path three-switch converter with energy-recycling technique for light energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.
    [20] A. A. Abdelmoaty and A. Fayed, “A single-step, single-inductor energy-harvesting based power supply platform with a regulated battery charger for mobile applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), 2015, pp. 666–669.
    [21] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulating photovoltaic arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.
    [22] C. Wei Tan, Green, T.C., Hernandez-Aramburo, C.A., “A current-mode controlled maximum power point tracking converter for building integrated photovoltaics,” European Conference on Power Electronics and Applications, 2007, pp. 3.
    [23] T. Esram and Patrick L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, Jun. 2007.
    [24] Y. Qiu, C. Van Liempd, B. Op het Veld, P. G Blanken, and C. Van Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in IEEE ISSCC Dig. Tech. Papers, 2011, pp. 118-119.
    [25] R. Enne, M. Nikolic, and H. Zimmermann, “A maximum power-point tracker without digital signal processing in 0.35μm CMOS for automotive applications,” in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 102-103.
    [26] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.
    [27] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622-2628, Jul. 2008.
    [28] N. Khaehintung, T. Wiangtong, and P. Sirisuk, “FPGA implementation of MPPT using variable step-size P&O algorithm for PV applications,” Int. Symp. on Commun. and Inf. Technol., 2006, pp. 212-215.
    [29] T.-H. Tsai and K. Chen, “A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 72-73.
    [30] S. Uprety and H. Lee, “A 43V 400mW-to-21W global-search-based photovoltaic energy harvester with 350μs transient time, 99.9% MPPT efficiency, and 94% power efficiency,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 404-405.
    [31] Y.-H. Lee, S.-J. Wang, and K.-H. Chen, “Quadratic differential and integration technique in V2 control buck converter with small ESR capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829-838, April, 2010.
    [32] S.-H. Lee, J.-S. Bang, K.-S. Yoon, S.-W. Hong, C.-S. Shin, M.-Y. Jung, and G.-H. Cho, “A 0.518mm2 quasi-current-mode hysteretic buck DC-DC converter with 3μs load transient response in 0.35μm BCDMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 214-215.
    [33] S.-W. Hong, T.-H. Kong, S.-H. Park, C. Park, S. Jung, S. Lee, and G.-H. Cho, “High area-efficient dc-dc converter with high reliability using time-mode Miller compensation (TMMC),” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2457–2468, Oct. 2013.
    [34] M. W. Davidson, tungsten-halogen incandescent lamps, Tallahassee, Florida, [Online]. Available: http://zeiss-campus.magnet.fsu.edu/articles/lightsources/tungstenhalogen.html.
    [35] L. Li, Y. Gao, P. K. T. Mok, K. M. Lau, S. Raju, C. P. Yue and J. K. O. Sin, “Monolithically integrated drivers for eco-friendly LED system-on-a-chip applications,” in IEEE Int. Conf. on Electron Devices and Solid-State Circuits (EDSSC), 2014, pp. 1-2.
    [36] – (Accessed 2016, Nov.), Best Research-Cell Efficiency. National Center for Photovoltaics (NCPV) at National Renewable Energy Laboratory (NREL), Golden, Colorado, [Online]. Available: http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg.
    [37] “Amorphous Silicon Solar Cells, Amorphous Photosensors”, Panasonic Eco Solutions Amorton Co., Ltd, [Online]. Available: http://www.mouser.tw/ds/2/315/EP120B-775610.pdf.
    [38] B. Minnaert and P. Veelaert, “A proposal for typical artificial light sources for the characterization of indoor photovoltaic applications,” Energies. 7, 1500-1516 (2014).
    [39] V. Scarpa, S. Buso, and G. Spiazzi, “Low complexity MPPT technique exploiting the effect of the PV cell series resistance,” in Twenty-Third Annual IEEE Appl. Power Electron. Conf. Exhibition, 2008, pp. 1-7.

    下載圖示 校內:2020-02-04公開
    校外:2020-02-04公開
    QR CODE