| 研究生: |
毛薇婷 Mao, Wei-Ting |
|---|---|
| 論文名稱: |
在離子液體中電沉積鐵和鐵-鈷 Electrodeposition of Iron and Iron-Cobalt from Ionic Liquids |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 離子液體 、電沉積 、鐵-鈷 、鐵 、奈米線 |
| 外文關鍵詞: | ionic liquids, electrodeposition, iron-cobalt, iron, nanowire |
| 相關次數: | 點閱:99 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文中探討添加氯化亞鐵(Iron(II) chloride)於氯化鈷-1-乙基-3-甲基咪唑(cobalt chloride-1-ethyl-3-methylimidazolium chloride,CoCl2-EMIC)離子液體中的電化學行為,利用定電位沉積所得的鐵-鈷會依沉積電位、氯化亞鐵添加的濃度以及電鍍時的溫度不同而產生不同形貌,如顆粒狀或奈米線狀結構等,並且也會影響鍍層中鐵-鈷的比例。可藉由調控電沉積電位與電鍍時所使用的基材來得到垂直於基材表面的鐵-鈷金屬奈米線。電沉積所得之鐵-鈷樣品以掃描式電子顯微鏡(SEM)觀察鍍層表面形貌、以能量分散光譜儀(EDS)分析鍍層成分,並且以X 射線繞射儀(XRD)以及穿透式電子顯微鏡(TEM)探討晶形結構。
利用沉積所得之鐵-鈷進行電溶測試,發現具高表面積的線狀結構其電容效果較形貌為顆粒狀電容來的高,並發現添加FeCl2 於CoCl2-EMIC 溶液中電沉積所得到的鐵-鈷奈米線其電容較鈷奈米線高。
另外論文中亦進行氯化亞鐵-1- 乙基-3- 甲基咪唑(Iron(II) chloride-1-ethyl-3-methylimidazolium chloride,FeCl2-EMIC)離子液體中電沉積鐵的探討,並利用循環伏安法觀察不同比例的FeCl2-EMIC 之電化學行為,而於EMIC 系統中,改變電沉積電位、溫度以及利用EMI-BF4 稀釋FeCl2-EMIC,皆會影響鍍層的形貌,並將電沉積所得之樣品分別以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X 射線繞射儀(XRD)以及穿透式電子顯微鏡(TEM)進行鑑定及結構分析。
In this study,the electrochemical behaviors of iron (Fe(II)) and cobalt (Co(II)) were studied in 40-60mol% cobalt chloride-1-ethyl-3-methylimidazolium chloride(CoCl2-EMIC)ionic liquid containing various concentration of FeCl2. Various morphologies of Fe-Co deposits can be obtained by adjusting the deposition parameters such as deposition potential,Fe(II) concentration and temperature. The morphologies and the composition of Fe-Co deposits were examined by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS),X-ray diffraction (XRD) and transmission electron microscopy (TEM). Direct template-free electrodeposition of aligned Fe-Co nanowires was achieved on a tungsten substrate in a quiescent Lewis acidic CoCl2-EMIC ionic liquid containing FeCl2 by applying an extremely large overpotential. The investigations of cyclic votammetry and constant current charge/discharge measurements on the capacitive behavior of nanowires reveal the wire deposited electrode are suitable or the supercapacitors applications.
Moreover, the electrochemical behaviors of iron (Fe(II)) was studied in iron chloride-1-ethyl-3-methylimidazolium chloride (FeCl2-EMIC) ionic liquid on glassy carbon electrode. The speciation and coordination of iron-chloride-based ionic liquids with various mole percentages of FeCl2 were investigated using electrospray ionization mass spectrometry (ESI-MS). The electrodeposition of iron was investigated in 40-60mol% FeCl2-EMIC ionic liquid . Fe deposits were characterized by scanning electron microscopy (SEM),X-ray diffraction (XRD) and transmission electron microscopy (TEM).
[1] W. Simka, D. Puszczyk, and G. Nawrat, Electrochimica Acta, 54, 5307-5319 (2009).
[2] K. R. Seddon, J. Chem. Tech. Biotechnol. , 68, 351-356 (1997).
[3] M. Galiński, A. Lewandowski, and I. Stępniak, Electrochimica Acta, 51, 5567-5580 (2006).
[4] P.Walden, Bull. Acad. Impwe.Sci.,1800 (1914).
[5] E. M. Arnett and J. F. Wolf, J. Am. Chem. Soc., 97, 3264-3265 (I975).
[6] R. J. GALE, B. GILBERT, and R. A. OSTERYOUNG, Inorg. Chem., 17, 2728-2729 (1978).
[7] J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc., 101, 323-327 (1979).
[8] J. S. Wilke, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem., 21, 1263-1264 (1982).
[9] T. B. Schemer and C. L. Hussey, Inorg. Chem., 22, 2099-2100 (1983).
[10] T. M. LAHER and C. L. HUSSEY, Inorg. Chem., 22, 3247-3251 (1983).
[11] T. B. SCHEFFLER and C. L. HUSSEY, Inorg. Chem., 23, 1926-1932 (1984).
[12] J. S. Wilkes and M. J. Zaworotko, J. CHEM. SOC., CHEM. COMMUN.,965-967 (1992).
[13] S. Zein el-Abedin and F. Endres, Chemphyschem, 7, 58-61 (2006).
[14] K. R. Seddon, A. Stark, and M. J. Torres, Pure and Applied Chemistry, 72, 2275-2287 (2000).
[15] T. Torimoto, T. Tsuda, K.-i. Okazaki, and S. Kuwabata, Advanced Materials, 22, 1196-1221 (2010).
[16] J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem . 21, 1263-1264 (1982).
[17] X.-H. Xu and C. L. Hussey, J. Electrochem. Soc., 140, 618-626 (1993).
[18] Y.-F. Lin and I.-W. Sun, Electrochimica Acta, 44, 2771-2777 (1999).
[19] P.-Y. Chen and I.-W. Sun, Electrochimica Acta, 46, 1169–1177 (2001).
[20] J.-F. Huang and I. W. Sun, Journal of The Electrochemical Society, 149, E348 (2002).
[21] J.-F. Huang and I. W. Sun, Journal of The Electrochemical Society, 151, C8 (2004).
[22] J.-F. Huang and I. W. Sun, Electrochimica Acta, 49, 3251-3258 (2004).
[23] Y.-T. Hsieh, M.-C. Lai, H.-L. Huang, and I. W. Sun, Electrochimica Acta, 117, 217-223 (2014).
[24] P. Giridhar, B. Weidenfeller, S. Z. El Abedin, and F. Endres, Phys Chem Chem Phys,16, 9317-26 (2014).
[25] Y. l. Zhu, Y. Katayama, and T. Miura, Journal of the Electrochemical Society, 159, D699-D704 (2012).
[26] C. Qiang, J. Xu, S. Xiao, Y. Jiao, Z. Zhang, Y. Liu, et al., Applied Surface Science, 257, 1371-1376 (2010).
[27] H.-Y. Huang, C.-J. Su, C.-L. Kao, and P.-Y. Chen, Journal of Electroanalytical Chemistry, 650, 1-9 (2010).
[28] Y. Katayama, I. Konishiike, T. Miura, and T. Kishi, Journal of Power Sources, 109, 327-332 (2002).
[29] M. Yamagata, N. Tachikawa, Y. Katayama, and T. Miura, Electrochimica Acta, 52,
3317-3322 (2007).
[30] T. Yanai, K. Shiraishi, T. Shimokawa, Y. Watanabe, T. Ohgai, M. Nakano, et al., Journal of Applied Physics, 115, 17A344 (2014).
[31] R. BERTAZZOLI and D. PLETCHER, Electrochimica Acta, 38, 671-676 (1993).
[32] J. Verbeeck, O. I. Lebedev, G. Van Tendeloo, L. Cagnon, C. Bougerol, and G. Tourillon, Journal of The Electrochemical Society, 150, E468 (2003).
[33] H. Kockar, M. Alper, T. Sahin, and O. Karaagac, Journal of Magnetism and Magnetic Materials, 322, 1095-1097 (2010).
[34] T. Yanai, K. Shiraishi, Y. Watanabe, T. Ohgai, M. Nakano, K. Suzuki, et al., Journal of Applied Physics, 117, 17A925 (2015).
[35] S.-Y. Wang, K.-C. Ho, S.-L. Kuo, and N.-L. Wu, Journal of The Electrochemical Society, 153, A75 (2006).
[36] M.-S. Wu, R.-H. Lee, J.-J. Jow, W.-D. Yang, C.-Y. Hsieh, and B.-J. Weng, Electrochemical and Solid-State Letters, 12, A1 (2009).
[37] S. Shivakumara, T. R. Penki, and N. Munichandraiah, Journal of Solid State Electrochemistry, 18, 1057-1066 (2013).
[38] C. Yuan, X. Zhang, B. Gao, and J. Li, Materials Chemistry and Physics, 101, 148-152 (2007).
[39] S.-L. Chou, J.-Z. Wang, H.-K. Liu, and S.-X. Dou, Journal of The Electrochemical Society, 155, A926 (2008).
[40] Z. Hu, L. Mo, X. Feng, J. Shi, Y. Wang, and Y. Xie, Materials Chemistry and Physics, 114, 53-57 (2009).
[41] E. Mitchell, F. De Souza, R. K. Gupta, P. K. Kahol, D. Kumar, L. Dong, et al., Powder Technology, 272, 295-299 (2015).
[42] C. R. Martin, Science, 266, 1961-1966 (1994).
[43] J. MAIER, nature materials, 4, 805-815 (2005).
[44] L. Mai, X. Tian, X. Xu, L. Chang, and L. Xu, Chem Rev, 114, 11828-62 (2014).
[45] N. D. Cuong, D. Q. Khieu, T. T. Hoa, D. T. Quang, P. H. Viet, T. D. Lam, et al., Materials Research Bulletin, 68, 302-307 (2015).
[46] X. Qin, H. Wang, Z. Miao, J. Li, and Q. Chen, Talanta, 139, 56-61 (2015).
[47] Y. Lu, S. Du, and R. Steinberger-Wilckens, Applied Catalysis B: Environmental,164, 389-395 (2015).
[48] S. Wang, S. P. Jiang, X. Wang, and J. Guo, Electrochimica Acta, 56, 1563-1569 (2011).
[49] F. Jamali-Sheini, R. Yousefi, D. S. Joag, and M. A. More, Vacuum, 101, 233-237 (2014).
[50] H. Masuda and K. Fukuda, Science, 268, 1466-1468 (1995).
[51] T.-W. HSU, H.-C. CHANG, and K.-C. LIN, Journal of China University of Science and Technology, 46, 95-112 (2011).
[52] B. Cheng and E. T. Samulski, Journal of Materials Chemistry, 11, 2901-2902 (2001).
[53] Y.-k. Su, C.-m. Shen, H.-t. Yang, H.-l. Li, and H.-j. Gao, Transactions of Nonferrous Metals Society of China, 17, 783-786 (2007).
[54] Z. Luo, Y. Fang, X. Zhou, and J. Yao, Materials Chemistry and Physics, 107, 91-95 (2008).
[55] J.-M. Moon and A. Wei, J. Phys. Chem. B, 109, 23336-23341 (2005).
[56] J.-M. Yang, S.-P. Gou, and I. W. Sun, Chemical Communications, 46, 2686 (2010).
[57] F. Endres, CHEMPHYSCHEM, 3, 144- 154 (2002).
[58] A. P. Abbott and K. J. McKenzie, Phys Chem Chem Phys, 8, 4265-79 (2006).
[59] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, Nat Mater, 8, 621-629 (2009).
[60] A. J. Bard and L. R. Faulkner, Electrochemical metods:Fundamentls and applications (2nd ed),(2001).
[61] E. Budevski, G. Staikov, and W. J. Lorenz, Electrochimica Acta, 45, 2559–2574 (2000).
[62] P. Allongue and E. Souteyrand, J. Electroanal. Chem . 286, 217-237 (1990).
[63] G. Trejo, A. F. Gil, and I. Gonzalez, Joural of Applied Electrochemistry 26, 1287-1294 (1996).
[64] G. Trejo, R. Ortega, Y. Meas, P. Ozil, E. Chainet, and B. Nguyen, Joural of the Electrochemical society, 145, 4090-4097 (1998).
[65] Y. F. Lin and I. W. Sun, Joural of the Electrochemical Society, 146, 1054-1059 (1999).
[66] C. L. Hussey and X. H. Xu, Joural of the Electrochemical society, 138, 1886-1890 (1991).
[67] G. GUNAGARDENA, G. H. I. MONTENEGRO, and B. SCHARIFKER,
Electroanalytical Chemistry, 138, 225-239 (1982).
[68] M. Avrami, J. Chem. Phys., 7, 1103-1112 (1939).
[69] B. S. and G. Hills, Electrochimica Acta, 1983, 879-889 (1983).
[70] P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. D. Souza, and J. Dupont, Polyhedron, 15, 1217-1219 (1996).
[71] C. Yuan, L. Hou, L. Shen, D. Li, F. Zhang, C. Fan, et al., Electrochimica Acta, 56, 115-121 (2010).
[72] M.-S. Wu and R.-H. Lee, Journal of The Electrochemical Society, 156, A737 (2009).
[73] G.-Y. Hou, C.-S. Wu, Y.-P. Tang, L.-Y. Sun, H.-Z. Cao, and G.-Q. Zheng, Materials Science and Engineering: A, 602, 33-40 (2014).