簡易檢索 / 詳目顯示

研究生: 蔣國龍
Jiang, Guo-Lung
論文名稱: 應用於半橋諧振轉換器之新型電流模式控制器
Novel Current Mode Controller for Half-Bridge Resonant Converter
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 59
中文關鍵詞: 脈衝頻率調控電流模式控制半橋諧振轉換器
外文關鍵詞: pulse-frequency modulation, PFM, current mode control, half-bridge resonant converter
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 諧振轉換器傳統上多為電壓模式控制,因而無法迅速反應輸入電壓變化,本論文提出應用於半橋諧振轉換器之新型電流模式控制器,利用非直流阻隔型分壓器將諧振電容電壓回授至電流迴路,並將鋸齒波加入電流迴路以維持穩定度。本論文首先探討半橋諧振轉換器之操作原理,再分析本論文提出之控制器並與現有電流模式控制器比較,最後實作半橋諧振轉換器,額定輸出功率為180 W、輸出電壓為12 V且輸入電壓範圍為350 至 410 V,並由數位信號處理器實現本論文提出之控制器。實驗結果顯示輸出電壓誤差最大為2.7%,而最高系統效率為93.5%,且能迅速反應輸入電壓變化。

    Conventionally, resonant converters are voltage mode controlled and are unable to achieve prompt line regulation. In this thesis, a novel current mode controller for a half-bridge resonant converter is proposed which feeds forward the current loop signal through a non-DC-blocking voltage divider. Furthermore, a sawtooth wave is added into the current loop feedback for stability. First, the operating principles and analyses of the half-bridge resonant converter are described in detail. Subsequently, the proposed controller is analyzed and compared to the presented current mode controller. Finally, a prototype of half-bridge resonant converter is implemented with an output voltage of 12 V, rated power of 180 W and input voltage range from 350 V to 410 V. The MCU is adopted to realize the proposed current mode control algorithm. The experimental results reveal that the output voltage regulation is within 2.7% and the highest system efficiency is 93.5%, as well as the proposed controller has the ability to rapidly respond to input voltage variation.

    Chapter 1 Introduction......1 1.1 Background and Motivation......1 1.2 Thesis Organization......5 Chapter 2 Introduction of Voltage Mode and Current Mode Controllers......6 2.1 Voltage Mode and Current Mode PWM Controllers......6 2.2 Voltage Mode PFM Controllers for Resonant Converter......7 2.3 Current Mode PFM Controllers for Resonant Converter......11 Chapter 3 Analysis of Proposed Current Mode Control for Half-Bridge Resonant Converter......16 3.1 Operating Principles of Half-Bridge Resonant Converter......17 3.1.1 Operating Principles in SRC Region......18 3.1.2 Operating Principles in LLC Region......22 3.2 Steady-State Analyses of Half-Bridge Resonant Converter......26 3.3 Proposed Current Mode Controller for Half-Bridge Resonant Converter......32 Chapter 4 Hardware Implementation and Experimental Results......37 4.1 System Specifications and Key Parameters Design......37 4.2 Simulation Results and Discussions......42 4.3 Experimental Results and Discussions......50 Chapter 5 Conclusions and Future Works......57 5.1 Conclusions......57 5.2 Future Works......57 References......58

    [1] R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, “A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications,” IEEE Trans. on Ind. Appl., vol. 27, pp. 63–73, 1991.
    [2] D. Huang, D. Gilham, W. Feng, P. Kong, D. Fu, and F. C. Lee, “High Power Density High Efficiency DC/DC Converter,” in Proc. IEEE ECCE, pp. 1392-1399, Sep. 2011.
    [3] F. Musavi, M. Craciun, D. S. Gautam, and W. Eberle, “Control Strategies for Wide Output Voltage Range LLC Resonant Dc–Dc Converters in Battery Chargers,” IEEE Trans. on Veh. Tech., vol. 63, pp. 1117-1125, March 2014.
    [4] M. Ryu, H. Kim, J. Baek, H. Kim, and J. Jung, “Effective Test Bed of 380-V DC Distribution System Using Isolated Power Converters,” IEEE Trans. on Ind. Electron., vol. 62, pp. 4525-4536, July 2015.
    [5] G. Yang, P. Dubus, and D. Sadarnac, “Double-Phase High-Efficiency, Wide Load Range High- Voltage/Low-Voltage LLC DC/DC Converter for Electric/Hybrid Vehicles,” IEEE Trans. on Power Electron., vol. 30, pp. 1876-1886, April 2015.
    [6] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC Resonant Converter for Front End DC/DC Conversion,” in Proc. IEEE APEC, pp. 1108-1112, 2002.
    [7] B. Yang, “Topology Investigation for Frontend DC/DC Power Conversion for Distributed Power Systems,” Ph. D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003.
    [8] R. Mammano, “Switching Power Supply Topology Voltage Mode vs. Current Mode”, Unitrode Design Note DN-62, 1999.
    [9] C. W. Deisch, “Simple Switching Control Method Changes Power Converter into A Current Source,” in Proc. IEEE PESC, pp. 300-306, 1978.
    [10] “L6699 Enhanced High Voltage Resonant Controller”, [Online], Available: www.st.com
    [11] “SSC9522S LLC Current-Resonant Off-Line Switching Control IC”, [Online], Available: www.semicon.sanken-ele.co.jp
    [12] “HR1001 Enhanced LLC Controller with Adaptive Dead Time Control”, [Online], Available: www.monolithicpower.com
    [13] “NCP1397 High Performance Resonant Mode Controller with Integrated High-Voltage Drivers”, [Online], Available: www.onsemi.com
    [14] “UCC25600 8-Pin High-Performance Resonant Mode Controller”, [Online], Available: www.ti.com
    [15] “RED1401 PSR Controller for LLC converters”, [Online], Available:
    www.redisem.com
    [16] J. B. Lee, C. E. Kim, J. K. Kim, J. H. Kim, S. C. Moon, and G. W. Moon, “A Novel Accurate Primary-Side Control (PSC) Method for Half-Bridge (HB) LLC Converter,” IEEE Trans. on Power Electron., vol. 30, no. 4, pp. 1797-1803, Apr. 2015.
    [17] T. Liang, C. Lin, W. Tseng, and Y. Lin, "Design and Implementation of Half-Bridge Resonant Converter with Novel Primary-Side Control," in IEEE Trans. on Power Electron., vol. 35, pp. 5408-5416, May 2020.
    [18] E. X. Yang, “Extended Describing Function Method for Small Signal Modelling of Resonant and Multi Resonant Converters,” Ph. D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1994.
    [19] B. Yang and F. C. Lee, “Small-Signal Analysis for LLC Resonant Converter,” CPES Seminar, S 7.3, pp. 144-149, 2003.
    [20] W. Feng, F. C. Lee, and P. Mattavelli, ‘‘Simplified Optimal Trajectory Control (SOTC) for LLC Resonant Converters,” IEEE Trans. on Power Electron., vol. 28, pp. 2415-2426, May 2013.
    [21] C. Buccella, C. Cecati, H. Latafat, P. Pepe, and K. Razi, ‘‘Observer-Based Control of LLC DC/DC Resonant Converter Using Extended Describing Functions,” IEEE Trans. on Power Electron., vol. 30, no. 10, pp. 5881-5891, Oct. 2015.
    [22] W. Feng, F. C. Lee, and P. Mattavelli, ‘‘Optimal Trajectory Control of LLC Resonant Converters for LED PWM Dimming,” IEEE Trans. on Power Electron., vol. 29, no. 2, pp. 979-987, Feb. 2014.
    [23] S. Zong, H. Luo, W. Li, X. He, and C. Xia, “Theoretical Evaluation of Stability Improvement Brought by Resonant Current Loop for Paralleled LLC Converters,” IEEE Trans. on Ind. Electron., vol. 62, no. 7, pp. 4170-4180, July 2015.
    [24] “FAN7688: Advanced Secondary Side LLC Resonant Converter Controller with Synchronous Rectifier Control”, [Online], Available: www.onsemi.com
    [25] J. Jang, P. S. Kumar, D. Kim, and B. Choi, “Average Current-Mode Control for LLC Series Resonant Dc-To-Dc Converters,” in Proc. IPEMC'12, pp.923-930, 2012.
    [26] H. Choi, ‘‘Charge Current Control for LLC Resonant Converter,” in Proc. IEEE APEC, pp. 1448-1452, 2015.
    [27] “UCC256301 Hybrid Hysteretic Mode Wide VIN LLC Resonant Controller”, [Online], Available: www.ti.com
    [28] “TEA19161T Digital Controller for High-Efficiency Resonant Power Supply”, [Online], Available: www.nxp.com
    [29] “NCP1399 - High Performance Current Mode Resonant Controller with Integrated High Voltage Drivers”, [Online], Available: www.onsemi.cn
    [30] Z. Hu, Y. Liu, and P. C. Sen, “Bang-Bang Charge Control for LLC Resonant Converters,” IEEE Trans. on Power Electron., vol. 30, no. 2, pp. 1093-1108, Feb. 2015.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE