| 研究生: |
楊定毅 Yang, Ting-Yi |
|---|---|
| 論文名稱: |
Cn波通過透水與不透水潛堤之數值研究 Numerical Study of Cnoidal Wave Propagation over Impermeable and Permeable Submerged Obstacles |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 橢圓函數波 、透水 、不透水 、系列潛堤 、布拉格共振 、RANS 、VARANS |
| 外文關鍵詞: | Cnoidal wave, permeable, impermeable, submerged obstacles, Bragg resonant, RANS, VARANS |
| 相關次數: | 點閱:202 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以二維數值黏性造波水槽模擬橢圓函數波通過透水與不透水系列潛堤之布拉格現象。本文使用之模式在水體區求解RANS (Reynolds Averaged Navier-Stokes Equations)方程式,在透水結構物區則求解VARANS (volume-averaged / Reynolds Averaged Navier-Stokes Equations)方程式並利用雙方程 紊流模式模擬波浪通過不透水與透水潛堤之紊流效應,並以流體體積法 (Volume of Fluid)追蹤自由液面,以期了解在橢圓函數波通過潛堤產生布拉格共振時潛堤附近之自由液面及流場狀況。
由本文數值模擬結果可知波浪通過系列潛堤之孔隙率越大,所造成的反射率會越小。此外更進一步探討比較波浪通過透水及不透水系列潛堤之流場、渦度及紊流動能之差異。
The main object of this study is to numerically investigate the Bragg-resonance interaction between cnoidal waves and submerged coastal obstacles. Both permeable and impermeable obstacles are considered.
The model named Cornell BReaking And Structure (COBRAS) calculates the mean flow fields outside and inside porous structures based on Reynolds Averaged Navier-Stokes (RANS) equations and Volume-Averaged/Reynolds Averaged Navier-Stokes (VARANS) equations, respectively. The turbulent kinematic energy (TKE) within the flow fields is estimated by performing closure model and the free surface deformations are tracked using volume of fluid method (VOF).
There are four-type submerged obstacles with different porosities and shapes (i.e. rectangular and arc) employed to study Bragg-resonance beha-viors. Our results suggest that the greater porosity the smaller reflection rate is given. Additionally, the numerical observations on TKE and fluid-vorticity due to wave-structure interaction are drawn.
1. Bailard, J.A., Deveries, J., Kirby, J.T., Guza, R.T., (1990). Bragg Reflection Breakwater : A New Shore Protection Method, Proc. 22nd Int. Conf. Coastal Eng., ASCE, New York, 1702-1715.
2. Chang, H.-H, (2004). Interaction of water waves and submerged permeable offshore structures. Ph.D. dissertation, National Cheng Kung University, Tainan, ROC.
3. Chorin, A.J., (1968). Numerical solution of Navier-Stokes equations. Math. Comp., 22, 745-762.
4. Chorin, A.J., (1969). On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp., 23, 341-353.
5. Cho, Y.-S., Lee, J.-I., (2003). Resonant reflection of Cnoidal waves on a sloping beach. J. Coastal Res., 19(4), 1011-1017.
6. Cho, Y.-S., Lee, J.-I., Kim, Y.-T., (2004). Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem., Ocean Eng., 31, 1325-1335.
7. Chang, K.-A., Hsu, T.-J., Liu, P.L.-F., (2005). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part II: Cnoidal waves., Coast. Eng., 52, 257-283.
8. Davies, A.G., Heathershaw, A.D., (1984). Surface Propagation over Sinusoidally Varying Topography, J. Fluid Mech., 144, 419-446
9. Goring, D.G., Raichlen, F., (1980). The generation of long waves in the laboratory. International Conference on Coast. Eng., ICCE, 763-783.
10. Hirt, C.W., Nichols, B.D., (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39 (1), 201-225.
11. Hsu, T.-W., Chang, H.-K., Tsai, L.-H., (2001). Experiments on the Bragg reflection of waves by different types of artificial bars. International Offshore and Polar Eng. Conference, ISOPE, 17-22.
12. Hsiao, S.-C., Liu, P.L.-F., Chen, Yongze, (2002). Nonlinear Water Waves Propagating over a Permeable bed. Proc.R. Soc., 458, 1291-1322.
13. Hsu, T.-J., Sakakiyama, T., Liu, P.L.-F., (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng., 46, 25-50.
14. Hsu, T.-W., Tsai, L.-H., Hwang, Y.-T., (2003). Bragg Scattering of Water Waves by Multiply Composite Artificial Bars, Coast. Eng. J., 45(2), 235-253 .
15. Hsu, T.-W., Hsieh, C.-M., Hwang, R., (2004). Using RANS to Simulate Vortex Generation and Dissipation around Submerged Breakwaters, Coast. Eng., 51, 557-579.
16. Huang, C.-J., Chang, H.-H., Hwung, H.-H., (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coast. Eng., 49, 1-24.
17. Korteweg, D.J., de Vries, G., (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 5th, 39, 422-443.
18. Kirby, J. T., Anton, J. P., (1990). Bragg Reflection of Waves by Artificial Bars, Proc. 22nd Int. Conf. Coastal Eng., ASCE, New York, 757-768.
19. Kothe, D.B., Mjolsness, R.C., Torrey, M.D., (1991). RIPPLE: a new model for incompressible flows with free surface. Rep. LA-12007-MS, Los Alamos National Laboratory.
20. Lamb, H., (1932). Hydrodynamics. Cambridge University Press.
21. Lara, J.L., Garcia, N., Losada, I.J., (2006). RANS modeling applied to random wave interaction with submerged permeable structures. Coast. Eng., 53, 395-417.
22. Losada, I.J., Patterson, M.D., Losada, M.A., (1997). Harmonic generation past a submerged porous step. Coast. Eng., 31, 281-304.
23. Lin, P., (1998). Numerical modeling of breaking waves. Ph.D dissertation, Cornell University, Ithaca, USA.
24. Lin, P., Liu, P.L.-F., (1998a). A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359, 239-264.
25. Lin, P., Liu, P.L.-F., (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., 103 (C8), 15677-15694.
26. Lin, P., Anuji Karunarathna, S.A.S., (2007). Numerical study of solitary wave interaction with porous breakwaters. J. Waterw. Port Coast. Ocean Eng., ASCE, 133 (5), 352-363.
27. Li, L., Watanabe, R., (2007). The protection of coastal structures from the impact of second order Cnoidal waves. International Offshore and Polar Eng. Conference, ISOPE, 17-22.
28. Liu, P.L.-F., Lin, P., Chang, K.-A., Sakakiyama, T., (1999). Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng., ASCE, 125 (6), 322-330.
29. Mei, C.C., (1989). The applied dynamics of ocean surface waves, World Scientific, Singapore.
30. Miles, J.W., (1981). Oblique Surface-Wave Diffraction by a Cylindrical Obstacle. Dyn. Atmos. Oceans, 6, 121-123.
31. Mei, C.-C., Hara, T. Naciri, M., (1988). Note on Bragg Scattering of Water Wave by Parallel Bars on the Seabed. J. Fluid Mech., 186, 147-162.
32. Nakayama, A., Kuwahara, F., (1999). A macroscopic turbulence model for flow in a porous medium. J. Fluids Eng. 121, 427-433.
33. Nield, D.A., Bejan, A., (1999). Convection in porous media. 2nd edn. Springer-Verlag, New York, USA.
34. Ohyama, T., Kioka, W., Tada, A., (1995). Applicability of numerical models to nonlinear dispersive. Coast. Eng., 24, 297-313.
35. Rodi, W., (1980). Turbulence Models and Their Application in Hydraulics: a State of the Art Review. International Association for Hydraulic Research, Delft, The Netherlands. 9021270021.
36. Shih, T.-H., Zhu, J., Lumley, J.L., (1996). Calculation of wall-bounded complex flows and free shear flows. Int. J. Numer. Meth. Fluids, 23 (11), 1133-1144 Dec.
37. Torres-Freyermuth, A., Lara, J.L., Losada, I.J., (2010). Numerical modelling of short- and long-wave transformation on a barred beach. Coast. Eng., 57 (3), 317-346.
38. van Gent, M.R.A., (1994). The modeling of wave action on and in coastal structures. Coast. Eng., 22, 311-339.
39. van Gent, M.R.A., (1995). Wave interaction with permeable coastal structures. Ph.D. dissertation, Delft University.
40. Wiegel, R.L., (1960). A presentation of Cnoidal wave theory for practical application. J. Fluid Mech., 7, 273-286.
41. Yoon, S.-B., Liu, P.L.-F., (1987). Resonant reflection of shallow-water waves due to corrugated boundaries. J. Fluid Mech., 180, 451-469.
42. 許泰文,楊炳達,周世恩,曾以帆,「Boussinesq 方程式應用於波浪布拉格反射之研究」,海洋工程學刊,第 3 卷,第 2 期,第 1-24 頁 (2004a)。
43. 許泰文,歐善惠,謝志敏,黃榮鑑,「應用 RANS 模擬波浪通過沙漣底床之布拉格反射現象」,第二十八屆力學會議論文摘要集,台北,第 51頁 (2004b)。
44. 董志明、黃惠欽、黃清哲,「數值波浪水槽中Cn波之產生及其傳遞特性之研究」,海洋工程學刊,第5卷,第1期,第13-30頁 (2005).
45. 蔡金晏,2009,「近岸碎波與波浪布拉格共振之流場數值模擬研究」,國立成功大學水利及海洋工程研究所博士論文。