簡易檢索 / 詳目顯示

研究生: 黃顯博
Huang, Hsien-Po
論文名稱: 使用影像結構及移動偵測之動態影像雜訊抑制濾波器
Noise Reduction Filter for Image Sequences Using Image Structure and Motion Detection
指導教授: 李國君
Lee, Gwo Giun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 87
中文關鍵詞: 高斯雜訊雜訊抑制
外文關鍵詞: noise reduction, Gaussian noise
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現一個使用影像結構及移動偵測之動態影像雜訊抑制濾波器,此濾波器被使用在抑制動態影像中的高斯雜訊。所提出的演算法是一個空間時間上的濾波器,它利用空間上和時間上的資訊去抑制雜訊,此濾波器利用影像結構及移動偵測去分析包含高斯雜訊的動態影像,此將能夠避免去除雜訊後所產生的不自然痕跡和模糊並保護空間上詳細資訊和移動的區域。此外所提出的演算法包含雜訊程度預測,因此所提出雜訊抑制演算法可以根據不同程度的雜訊去適應性地調節濾波器。結果顯示我們提出的濾波器在主觀的視訊品質和客觀的訊號雜訊比改善比較都有良好的效果。

    This thesis presents a noise reduction filter for image sequences by using image structure and motion detection. We focus on reducing Gaussian noise in image sequences in this thesis. The proposed noise reduction filter is a spatiotemporal filter and it takes advantage of both the spatial and temporal information to reduce noise. In order to analyze the image sequences corrupted by Gaussian noise, this filter uses the technique of the image structure detection and motion detection. It would avoid inducing the artifacts and burring after noise reduction. The region of the spatial detail and motion is also preserved. Besides, because our proposed noise reduction algorithm includes the noise level estimation, the proposed noise reduction filter is adaptive according to the different noise level. The result shows that the performance of our proposed noise reduction filter is better than other methods in subjective visually quality and objective SNRi comparison.

    Abstract ii Table of Contents iv List of Figures vii Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation 2 1.3. Organization of This Thesis 3 Chapter 2 Noise Reduction in Image Sequences Algorithms Overview 4 2.1. Noise Reduction in Image Sequences Problem Statement 4 2.2. Noise Models 8 2.2.1. Gaussian Noise Model 9 2.2.2. The Other Noise Models 10 2.3. Weighted Averaging Filter 13 2.3.1. Averaging Filter 14 2.3.2. Temporal Motion Detection Filter 14 2.3.3. LMMSE filter 15 2.3.4. Motion Compensated Adaptive Weighted Averaging Filter 17 2.3.5. 3-D Rational Filter 19 2.4. Order-Statistic Filter 20 2.4.1. Median Filter 20 2.4.2. α-trimmed Filter 21 2.4.3. K Nearest Neighbour Filter 22 2.4.4. Multistage median filter 24 2.5. L-Filter 26 2.6. Wiener Filter 29 2.7. Noise Reduction Filter Using Motion Compensation and Signal Decomposition 31 2.8. Neural Network for Noise Reduction 32 2.9. Wavelet Domain Filter 33 2.10. Motion Detection Method 34 2.10.1. Frame Difference Motion Detection Method 35 2.10.2. Noise-Insensitive Motion Detection Method 35 2.10.3. Motion Detection Using the Edge Information 37 Chapter 3 Proposed Noise Reduction Algorithm 40 3.1. The Outline of Proposed Algorithm 41 3.2. Select the Spatiotemporal Support 43 3.3. The Image Structure Detection 44 3.3.1. Select the Higher Correlation Direction 44 3.3.2. Merge the Selected Direction into a Region 46 3.4. The Motion Detection 46 3.5. Noise Level Estimation 50 3.5.1. Detect Flat Region 50 3.5.2. Compute the Absolute Differences in Flat Region 51 3.5.3. Estimate the Noise Level 52 3.6. Noise Reduction Filter 52 Chapter 4 Experimental Results 55 4.1. Performance Evaluation Metric 55 4.2. Simulation Results of the Internal Steps 57 4.2.1. Simulation Result of Image Structure Detection 57 4.2.2. Simulation Result of Motion Detection 62 4.2.3. Simulation Result of Noise Level Estimation 64 4.2.4. Simulation Result of the Spatiotemporal Support Size Adjustment 65 4.3. Experimental Results and Comparison 66 Chapter 5 Conclusion and Future Work 83 5.1. Conclusion 83 5.2. Future Work 84 Bibliography 85

    [1]J. C. Brailean, R. P. Kleihorst, S. Efstratiadis, A. K. Katsaggelos and R.L Lagendijk, “Noise reduction filters for dynamic image sequences: a review”, Processing of the IEEE, Vol. 83 NO.9, Step. 1995.
    [2]R. C. Gonzalez and R. E. Woods, “Digital image processing”, Second Edition, Prentice-Hall, Inc. 2002.
    [3]M. I. Sezan, M. K. Ozkan and S. V. Fogel, “Temporally adaptive filtering of noisy image sequences using a robust motion estimation algorithm”, in IEEE proc. Int. Conf. Acoustic. Speech, and signal proc., Vol. 4, May.1991.
    [4]D. Martinez and Jae Lim,” Implicit motion compensated noise reduction of motion video scenes”, ICASSP IEEE, Apr. 1985.
    [5]E. Dubois and S. Sabri, “Noise Reduction in Image Sequences Using Motion-Compensated Temporal Filtering”, IEEE Trans. on Communications, Vol. 32, Issue 7, July 1984.
    [6]R. P. Kleihorst, R. L. Lagendijk and J. Biemond, “Noise reduction of image sequences using motion compensation and signal decomposition”, IEEE Trans. on Image Processing, Vol. 4, Issue 3, March 1995.
    [7]D. I. Crawford, “Spatio/temporal prefiltering for a videoconference coder,” in Proc. Int. ZEE Conf on Electron. Image Process. , July 1982
    [8]S. Inamori, S. Yamauchi and K. Fukuhara, “A method of noise reduction on image processing” , IEEE Trans. on Consumer Electronics, Vol. 39, Issue 4, Nov. 1993.
    [9]M. K. Ozkan, M. I. Sezan, and A. M. Tekalp, “Adaptive motion-compensated filtering of noisy image sequences”, IEEE Trans. on circuits and systems for video technology, Vol.3, Aug.1993
    [10]F. Cocchia, S. Carrato and G. Ramponi, ”Design and real-time implementation of a 3-D rational filter for edge preserving smoothing”, IEEE Trans. on Consumer Electronics, Vol. 43, Issue 4, Nov.1997.
    [11]Y. Huang and L. Hui, “An adaptive spatial filter for additive Gaussian and impulse noise reduction in video signals”, ICICS IEEE 2003.
    [12]K. Jostschulte, A. Amer, M. Schu and H. Schroder, “Perception adaptive temporal TV-noise reduction using contour preserving pre-filter techniques”, IEEE Trans. on Consumer Electronics, Vol. 44, Issue 3, Aug. 1998.
    [13]M. E. Hassouni, H. Cherifi and D. Aboutajdine, “HOS-based image sequence noise removal”, IEEE Trans. on Image Processing, Vol. 15, Issue 3, March 2006.
    [14]Bovik, T. Huang, D. Munson and Jr. “A generalization of median filtering using linear combinations of order statistics”, IEEE Trans. on Signal Processing, Vol. 31, Issue 6, Dec.1983.
    [15]V. Zlokolica, W. Philips and D. Van De Ville,” Robust non-linear filtering for video processing”, IEEE Digital Signal Processing Conference, Vol2, July 2002 .
    [16]V. Zlokolica and W. Philips, “Motion and detail adaptive denoising of video”, SPIE Telecommunications and Information Processing, 2004.
    [17]G. R.Arce, ”Multistage order statistic filters for image sequence processing”, IEEE Trans. on Signal Processing, Vol. 39, Issue 5, May 1991.
    [18]C. Kotropoulos and I. Pitas,” Adaptive LMS L-filters for noise suppression in images”, IEEE Trans. on Image Processing, Vol. 5, Issue 12, Dec.1996.
    [19]Pitas and A. N. Venetsanoupoulos, “LMS and RLS adaptive L-filters”, ICASSP IEEE April 1990.
    [20]Pitas and A.N. Venetsanopoulos, “Adaptive L-filters”, European Conference on Circuit Theory and Design, 1989.
    [21]E.K.P. Chong and S.H.Zak, “An Introduction to Optimization”, Second Edition, New York, NY: John Wiley & Sons, Inc., 2001.
    [22]T. Koivunen, “A noise-insensitive motion detector”, IEEE Trans. on Consumer Electronics, Vol. 38, Issue 3, Aug.1992.
    [23]Bosco, A. Bruna, G. Messina and G. Spampinato, “Fast method for noise level estimation and integrated noise reduction”, IEEE Trans. on Consumer Electronics, Vol. 51, Aug. 2005.
    [24]M. F. Schollmeyer and W. H. Tranter, “Noise generators for the simulation of digital communication systems”, Proceedings of the 24th Annual Simulation Symposium, 1991.
    [25]P. Roosmalen, S. Westen, R. Lagendijk and J. Biemond, “Noise reduction for image sequences using an oriented pyramid thresholding technique”, IEEE Conference on Image Processing, 1996.
    [26]A Pizurica, V Zlokolica and W Philips, “Noise reduction in video sequences using wavelet-domain and temporal filtering”, SPIE Telecommunications and Information Processing, 2003.
    [27]M.K. Ozkan, A.T. Erdem, M.I. Sezan and A.M. Tekalp, “Efficient multiframe Wiener restoration of blurred and noisy image sequences”, IEEE Transactions on Image Processing, Vol.1, Issue 4, Oct. 1992.
    [28]A.T. Erdem, M.I. Sezan and M.K. Ozkan, “Motion-compensated multiframe Wiener restoration of blurred and noisy image sequences”, IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1992.
    [29]J. Szostakowski and S. Skoneczny, "Motion compensated neural filters for video noise reduction," in Proc. SPIE - The International Society for Optical Engineering, Jan. 1999.

    下載圖示 校內:2012-09-12公開
    校外:2012-09-12公開
    QR CODE