簡易檢索 / 詳目顯示

研究生: 陳永全
Chen, Yung-Chiuan
論文名稱: 多孔性瀝青混凝土的透水與介電性質之分析
Analysis of Permeability and Dielectric Properties of Porous Asphalt Concrete
指導教授: 陳建旭
Chen, Jian-Shiuh
共同指導教授: 張介民
Chang, Chieh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 滲透係數變水頭試驗介電性質
外文關鍵詞: permeability, falling-head test, dielectric value
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔隙瀝青混凝土以高孔隙率為設計目標,具有相當之透水性,可有效降低雨天路面積水之可能,並增加路面摩擦性,減少輪胎打滑之可能性;PAC之多孔結構,亦能吸收部份噪音,降低交通引起之噪音。PAC的多孔結構,會受到砂塵堵塞或孔隙閉合之影響,導致透水性能降低。實驗室變水頭(falling-head)與定水頭(constant-head) 試驗所量測之K值具有良好之一致性,利用變水頭試驗量測多點性,可有效評估PAC排水速率之變化,更能瞭解PAC之排水特性。
    研究發現,PAC的排水速率不會受到試體厚度或水頭高度改變,而等比例增減,因此無法保持固定的滲透係數K值。利用堵塞與壓實對實驗室透水之影響,探討堵塞與壓實對孔隙率改變之影響,進而評估現地透水之影響權重,實驗發現堵塞會使得KC / KO值降低至0.44,利用吸力原理清除堵塞,可有效回升部份透水性能,KR / KO值可達0.58;不同瀝青抵抗車轍壓實造成之永久變形能力不同,抗車轍能力高黏瀝青最佳,其次改質III型瀝青、AR8000瀝青,車轍變形對三種瀝青之垂直向透水影響並不明顯,但隨著車轍變形量增加,除HA瀝青外,對改質III型與AR8000瀝青之水平向透水皆有明顯降低之現象,其KC / KO值最多可降至0.58,藉由變形量與K值之關係,可建構出永久變形影響鋪面之滲透係數模型。介電量測為一種非破壞性之檢測,藉由電磁波之傳遞與反射,可有效量測鋪面之厚度與密度。以介電量測與實驗方式評估堵塞與壓實造成孔隙改變之關係,建立PAC密度預測模式,並探討介電與K值之關係。

    關鍵字:滲透係數、變水頭試驗、介電性質

    Porous asphalt concrete is designed with high porosity, with equivalent permeability. It can effectively reduce the possible rain water in the street, and to increase the surface friction, reducing the possibility of wheel slip. PAC can also reduce traffic-induced noise by absorbing noise. Pores will be clogged by sand and reduce porosity, resulting in permeability properties decreasing. Laboratory falling-head test measure K value has a good consistency with constant-head test. Falling-head test can measure K value on different water head, used to assess the drainage rate of PAC, and more understand the drainage characteristic of PAC. Research found, the rate of drainage is not proportional change with the thickness or head height, so K value can not maintain a constant value. Evaluating the effect of clog and compaction in laboratory drainage test, and then assess the in-situ permeability. Results shows KC/KO will decreased to 0.44. Clearing clog by suction will make KC/KO recovered to 0.58. High viscosity asphalt resistance to rutting best, then modify type III asphalt, AR-8000. Rutting has not obvious effect on vertical drainage, but except of HA with increase of rutting deformation, with decrease of permeability. By the relationship between K value and deformation can be constructed out of the pavement permeability model. Dielectric measurement as a kind of non-destructive testing, through the transmission and reflection of electromagnetic waves, which can effectively measure pavement thickness and density. To evaluate the change of pores between clog and deformation by dielectric measurement and experimental methods. Then constructing PAC density prediction model, and assess the relationship between K value and dielectric value.

    Key Words: permeability, falling-head test, dielectric value

    目錄 摘要 I 誌謝 V 目錄 VI 表目錄 XII 圖目錄 XIII 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-3 1.4 研究範圍 1-4 第二章 文獻回顧 2-1 2.1 多孔性瀝青混凝土的透水性 2-1 2.1.1影響透水性之因素 2-1 2.1.2透水性與孔隙率 2-2 2.1.3 壓實度與孔隙率 2-5 2.1.4 粒徑大小對透水的影響 2-8 2.2 滲透係數 2-9 2.2.1 滲透係數的基本原理 2-9 2.2.2 透水時間與滲透係數的關係 2-10 2.2.3水頭與滲透係數之關係 2-12 2.3 多孔隙瀝青混凝土的透水與堵塞關係 2-13 2.3.1 堵塞來源 2-13 2.3.2 實驗堵塞模擬程序 2-13 2.3.3 堵塞之影響 2-14 2.3.4 堵塞量與滲透係數之關係 2-15 2.4 粒徑與水傳導之關係 2-19 2.5介電性質的基本原理 2-21 2.5.1 介電常數 2-21 2.5.2介電常數與孔隙率 2-22 第三章 實驗方法及材料 3-1 3.1研究流程 3-1 3.2試驗材料 3-2 3.2.1 採用級配 3-2 3.2.2馬歇爾配合設計 3-2 3.2.3孔隙率 3-4 3.2.4 壓實變形後之孔隙率計算 3-5 3.3 多孔性瀝青混凝土配合設計 3-6 3.3.1 設定孔隙率目標值 3-6 3.3.2 選擇嘗試級配與嘗試瀝青含量 3-7 3.3.3 確定目標孔隙率 3-8 3.3.4 決定最佳瀝青含量 3-9 3.4試體堵塞模擬程序 3-11 3.4.1堵塞材料 3-11 3.4.2試體堵塞程序 3-11 3.5實驗室透水試驗 3-12 3.5.1定水頭試驗 3-12 3.5.2變水頭試驗 3-13 3.5.3 矩形試體之垂直向透水試驗 3-14 3.5.4 矩形試體之水平向透水試驗 3-16 3.5.5 微分方法分析滲透係數 3-16 3.6介電常數量測 3-18 3.6.1量測儀器與校正 3-18 3.6.2 多孔性瀝青混凝土的介電量測 3-18 第四章 試驗結果與討論 4-1 4.1 試驗材料基本物性 4-1 4.1.1 黏結料 4-1 4.1.2瀝青黏結料基本性質 4-1 4.1.3粒料基本物性試驗 4-2 4.2 多孔性瀝青混凝土配合設計 4-3 4.2.1 設定孔隙率目標值 4-3 4.2.2 確定目標孔隙率 4-4 4.2.3 決定最佳瀝青含量 4-4 4.2.4 混合料規範檢驗 4-6 4.3 透水試驗 4-7 4.3.1 試體厚度與滲透係數 4-8 4.3.2 水頭與滲透係數之關係 4-9 4.3.3 變水頭試驗 4-10 4.3.4 變水頭試驗評估厚度差異 4-11 4.3.5 不同瀝青黏結料的透水性差異 4-12 4.3.6 時間微分方法分析變水頭試驗 4-14 4.3.7 矩形試體的垂直向透水 4-15 4.3.8 PAC的水平向透水 4-17 4.4 堵塞程序與透水試驗 4-20 4.4.1 堵塞材料 4-20 4.4.2 試體厚度對堵塞之影響 4-21 4.4.3 清除堵塞後PAC試體之透水性 4-23 4.4.4 粗堵塞材料對透水之影響 4-24 4.4.5 細堵塞材料對透水之影響 4-26 4.5 壓密與滲透係數 4-27 4.5.1 壓密對垂直向滲透係數(KV)之影響 4-27 4.5.2 壓密對水平向滲透係數(KH)之影響 4-28 4.5.3 壓密對排水速率之影響 4-30 4.5.4 滲透係數K與孔隙率Va之關係 4-32 4.6多孔性瀝青混凝土之現地成效 4-33 4.6.1 實驗室壓密變形孔隙預測模式 4-33 4.6.2 現地車轍量與孔隙率之關係 4-34 4.6.3 孔隙與現地透水量之關係 4-36 4.6.4 滲透係數與Q15之關係 4-38 4.6.5 孔隙對抗滑度之影響 4-39 4.6.6 鋪面孔隙結構與噪音之關係 4-41 4.7 PAC的介電常數量測 4-42 4.7.1 基本介電量測 4-42 4.7.2 PAC之基礎理論介電常數 4-43 4.7.3 孔隙率與介電常數之關係 4-44 4.7.4 介電混合模型 4-46 第五章 結論與建議 5-1 參考文獻 參-1

    參考文獻

    大川秀雄,佐藤隆宏,帆莉浩三 (1993) 「排水性鋪面的滲透係數相關之研究」,土木學會論文集,第21卷,178號,第101-108頁,日本。

    帆莉浩三,丸山暉彥,大川秀雄,小山 清 (1994) 「排水性鋪面的孔隙結構相關之研究」,土木學會論文集,第22卷,484號,第69-76頁,日本。

    Abdullah, W. S., and Obaidat, M. T. (1998) “Influence of Aggregate Type and Gradation on Voids of Asphalt Concrete Pavements,” Journal of Materials in Civil Engineering, Vol.10, pp.76-85.

    Bean, E. Z., Hunt, W.F., and Biselspach, D.A. (2007) “Field Survey of Permeable Pavement Surface Infiltration Rates,” Journal of Irrigation and Drainage Engineering, Vol.133, No.3, pp.249-255.

    Bendtsen, H., and Raaberg, J. (2007) “Clogging of Porous Pavement,” Danish Road Institute Technical Note 55, Nr.55, No.7, pp.1-27.

    Dean, C., Sansalone, J., Cartledge, F., and Pardue, J. (2005) “Influence of Hydrology on Storm Water Metal Element Speciation at the Upper End of the Urban watershed,” Journal of Environmental Engineering, Vol.131, No.4, pp.632-642.

    Fwa, T. F., Tan, S. A., and Guwe, Y. K. (1999) “Laboratory Evaluation of Clogging Potential of Porous Asphalt Mixtures,” Transportation Research Record : Journal of Transportation Research Board, No.1681, pp.43-49.

    Hamzah, M. O., and Hardiman (2005) “Characterization of the Clogging Behaviour of Double Layer Porous Asphalt,” Journal of the Eastern Asian Society for Transportation Studies, Vol.6, pp.968-980.

    Hovem, J. M. (1995) “ Acoustic Waves in Finely Layered Media,” Geophysics, Vol.60, No.4, pp.1217-1221.

    Huang, Y. H. (2004) pavement analysis and design. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall.

    Jones, R. H., and Jones, H. A. (1989) “Granular Drainage Layers in Pavement Foundations,” International Symposium on Unbound Aggregates in Roads, 3rd, University of Nottingham, pp.55-99.

    Kraemer, C. (1990) “Porous Asphalt Surfacing in Spain,” Proceedings of International Sympsoium on Highway Surfacing, University of Ulster.

    Mallick, R. B., Kandhal, P. S., Cooley, L. A., and Watson, D. E. (2000) “Design, Construction and Performance of New Generation Open-Graded Friction Course,” Journal of the Association of Asphalt Paving Technologist, Vol.69, pp.391-423.

    Maupin, G. W. (2005) “Asphalt Mix Design Method for Permeability,” Transportation Research Board Annual Meeting, Washington D.C. (CD-ROM)

    Mclsaac, R., and Rowe, R. K. (2007) “Clogging of Gravel Drainage Layers Permeated with Landfill Leachate,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.8, pp.1026-1039.

    Ministry of Communications (MOC) (2000) “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering,” JTJ 052-2000, China Communication Press, Beijing.

    Nakanishi, H., Takei, S., and Goto, K. (1995) “Suggestion to the Improvement in Durability of the Function of Porous Asphalt Pavements,” Road Construction, Japan.

    Nelson, S. O., and Bartley, P. G. (1998) “Open-Ended Coaxial-Line Permittivity Measurements on Pulverized Materials,” IEEE Transactions on Instrumentation and Measurement, Vol.47, No.1, pp.133-137.

    Saarenketo, T. (1997) “Using Ground-Penentrating Radar and Dielectric Probe Measurements in Pavement Density Quality Control, ” Transportation Research Record : Journal of Transportation Research Board, 1575, Washington, D.C., pp.34-41.

    Saarenketo, T., and Scullion, T. (2000) “Road Evaluation with Ground Penetrating Radar,” Journal of Applied Geophys., Vol.43, pp.119-138.

    Sansalone, J., Kuang, X., and Ranieri, V. (2008) “Permeable Pavement as a Hydraulic and Filtration Interface for Urban Drainage,” Journal of Irrigation and Drainage Engineering, Vol.134, No.5, pp.666-674.

    Suresha, S. N., Varghese, G., and Ravi, A. U. (2009) “Characterization of Porous Friction Course Mixes for Different Marshall Compaction Efforts,” Construction and Building Materials 23, pp.2887-2893.

    Suresha, S. N., Varghese, G., and Ravi, A. U. (2009) “Laboratory and Theoretical Evaluation of Clogging Behaviour of Porous Friction Course Mixes,” International Journal of Pavement Engineering 1-10.

    Tan, S. A., Fwa, T. F., and Han, C. T. (2003) “Clogging Evaluation of Permeable Bases,” Journal of Transportation Engineering, Vol.129, pp.309-315.

    Wu, F. C. and Huang, H. T. (2000) “Hydraulic Resistance Induced by Deposition of Sediment in Porous Medium,” Journal of Hydraulic Engineering, vol.127, No.7, pp.647-651.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE