簡易檢索 / 詳目顯示

研究生: 陳潮鋒
Chan, Chio-Fong
論文名稱: 孤立波與雙潛沒式彈性結構物交互作用之數值模擬
Numerical Simulation of Solitary Wave Interaction with Double Submerged Elastic Structures
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 流固耦合OpenFOAMIsoAdvectorstabilized k-ωSST孤立波
外文關鍵詞: FSI, OpenFOAM, IsoAdvector, stabilized k-ωSST, solitary wave
相關次數: 點閱:55下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體與結構物之間的交互作用為多物理場問題。當結構物為彈性體時,該交互作用更為複雜。本研究使用的數值模式為基於C++程式語言與有限體積法開發的開源CFD軟體OpenFOAM,透過求解器solids4Foam控制流體與固體求解器分別求解流體與固體的控制方程式並於流固交界面進行數據交換,實現彈性體的流固耦合模擬。流體的控制方程式使用Reynolds-Averaged Navier-Stokes;彈性結構物的本構關係式使用Saint Venant-Kirchhoff Law。另外,本研究引入stabilized k-ωSST紊流模式(Larsen & Fuhrman, 2018)改善紊流強度高估的問題,並引入幾何流體體積法IsoAdvector (Roenby & Jasak, 2016)進行介面重建以得到更準確的自由液面。本研究首先以Wu et al. (2012)的實驗配置模擬孤立波通過單個潛沒式垂直剛性結構物,分析自由液面演化、速度場分布、渦度場演化,以及紊流強度分布並與Wu et al. (2012)實驗結果比較,驗證本數值模式模擬孤立波與潛沒式結構物的強非線性交互作用之適用性。接著本研究進一步模擬孤立波通過單個潛沒式垂直彈性結構物,分析速度場分布、紊流強度分布,以及彈性結構物的受力、位移並與實驗結果比較,驗證本數值模式模擬兩相流與彈性體的流固耦合之適用性,以及本數值模式預測潛沒式彈性結構物運動的能力。
    最後,本研究進一步延伸模擬孤立波通過間隔一定距離的雙潛沒式垂直彈性結構物,分析不同水平間距的雙潛沒式彈性結構物之彈性效應對流場的影響。

    In the present study, the process of solitary wave interaction with double submerged elastic structures is simulated by an open-source software-OpenFOAM, where a fluid-structure interaction toolbox solids4Foam is employed to perform a strong coupling partitioned approach. Wave generation and absorption are performed by the wave generation toolbox waves2Foam. The incompressible fluid is described by Reynolds-Averaged Navier-Stokes equations, turbulence modeling is performed by the stabilized k-ωSST turbulence closure model, the free surface is captured by GVOF IsoAdvector, and the deformation of the elastic structure is described by Saint Venant-Kirchhoff Law. There are two experiments to validate the accuracy of the numerical model. In the first experiments, the solitary wave passing through the submerged rigid structure is considered to confirm that the numerical model is capable of simulating the strongly nonlinear interaction of a solitary wave with the submerged structure. In the other experiments, the solitary wave passing through the submerged elastic structure is considered to confirm the ability of the numerical model to simulate the water wave interaction with the elastic structure. Finally, the solitary wave interaction with the double submerged elastic structure at various distances is considered. The evolution of the free surface, velocity fields, turbulence intensity fields, displacement of the elastic structure, force acting on the elastic structure, and the coefficients of reflection and transmission are analyzed.

    中文摘要 I ABSTRACT II 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號表 XXIII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究方法 5 1.4 論文架構 5 第二章 理論基礎 7 2.1 數值模型 7 2.2.1 數值軟體: OpenFOAM 7 2.1.2 求解器: solids4Foam 8 2.1.3 函式庫: stabRAS 9 2.1.4 函式庫: IsoAdvector 9 2.1.5 函式庫: waves2Foam 10 2.2 數值模型理論 11 2.2.1 流場控制方程式(Fluid Governing Equations) 11 2.2.2 紊流閉合模式(Turbulence Closure Model) 14 2.2.3 流體體積法(Volume of Fluid, VOF) 18 2.2.4 固體控制方程式(Solid Governing Equations) 25 2.2.5 鬆弛區方法(Relaxation Zone Method) 29 2.2.6 ALE法(Arbitrary Lagrangian-Eulerian Method) 30 2.2.7 流固交界面的邊界條件(Boundary Conditions at the Fluid-Solid Interface) 33 第三章 數值模式 35 3.1 有限體積法(Finite Volume method, FVM) 35 3.2 分區法(Partitioned Approach) 38 3.3 動態鬆弛法(Dynamic Relaxation Method) 42 3.4 計算流程 45 第四章 模式驗證 47 4.1 孤立波與潛沒式垂直剛性結構物的交互作用 47 4.1.1 數值模式配置 47 4.1.2 網格敏感度測試 49 4.1.3 自由液面演化與速度場分析 61 4.1.4 渦度場分析 67 4.1.5 紊流強度分析 70 4.2 孤立波與潛沒式垂直彈性結構物的交互作用 75 4.2.1 數值模式配置 75 4.2.2 網格敏感度測試 78 4.2.3 速度場分析與紊流強度分析 79 4.2.4 彈性結構物之受力與位移分析 88 第五章 孤立波與雙潛沒式垂直彈性結構物的交互作用 90 5.1 數值模式配置 90 5.2 不同水平間距的雙潛沒式彈性結構物 93 5.2.1 速度場分析與紊流強度分析 93 5.2.2 雙彈性結構物之受力與位移分析 121 5.2.3 反射與透射效應 123 第六章 結論與建議 125 6.1 結論 125 6.2 建議 127 參考文獻 128

    [1] 蕭郁、蕭士俊,2020。二維孤立波通過平板試驗。第44屆全國力學會議 (2020年11月)。
    [2] Baek, H., & Karniadakis, G.E. (2012). A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys., 231, 629-652.
    [3] Boshenyatov, B.V. (2013). Suppression of tsunami waves by underwater obstacles. Doklady Physics, 58, 453-456.
    [4] Boshenyatov, B.V., & Zhiltsov, K.N. (2016). Simulation of the interaction of tsunami waves with underwater barriers.
    [5] Brummelen, V.E. (2011). Partitioned iterative solution methods for fluid–structure interaction. International Journal for Numerical Methods in Fluids, 65, 3-27.
    [6] Cardiff, P., Karavc, A., Jaeger, P.D., Jasak, H., Nagy, J., Ivankovi'c, A., & Tukovi'c, V. (2018). An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. arXiv: Numerical Analysis, 1-45.
    [7] Collins, I., Hossain, M., Dettmer, W.G., & Masters, I. (2021). Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches. Renewable & Sustainable Energy Reviews, 151, 111478.
    [8] Degroote, J. (2009). Partitioned Simulation of Fluid-Structure Interaction. Archives of Computational Methods in Engineering, 20, 185-238.
    [9] Dettmer, W.G., Lovrić, A., Kadapa, C., & Peric, D. (2020). New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling. International Journal for Numerical Methods in Engineering.
    [10] Devolder, B., Troch, P.A., & Rauwoens, P. (2018). Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®. Coastal Engineering.
    [11] Fridman, A.M., Alperovich, L.S., Shemer, L., Pustilnik, L.A., Shtivelman, D., Marchuk, A., & Liberzon, D. (2010). Tsunami wave suppression using submarine barriers. Physics-Uspekhi, 53, 809-816.
    [12] Girfoglio, M., Quaini, A., & Rozza, G. (2021). Fluid-structure interaction simulations with a LES filtering approach in solids4Foam. Communications in Applied and Industrial Mathematics, 12, 13 - 28.
    [13] Heil, M., Hazel, A.L., & Boyle, J. (2008). Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Computational Mechanics, 43, 91-101.
    [14] Hewitt, S., Margetts, L., Revell, A.J., Pankaj, P., & Levrero-Florencio, F. (2019). OpenFPCI: A parallel fluid-structure interaction framework. Comput. Phys. Commun., 244, 469-482.
    [15] Idelsohn, S.R., Pin, F.D., Rossi, R., & Oñate, E. (2009). Fluid–structure interaction problems with strong added‐mass effect. International Journal for Numerical Methods in Engineering, 80, 1261-1294.
    [16] Jacobsen, N. G., Fuhrman, D. R., & Fredsøe, J. (2012). A wave generation toolbox for the open‐source CFD library: OpenFoam®. International Journal for numerical methods in fluids, 70(9), 1073-1088.
    [17] Jasak, H., & Weller, H.G. (2000). Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical Methods in Engineering, 48, 267-287.
    [18] Küttler, U., & Wall, W.A. (2008). Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Mechanics, 43, 61-72.
    [19] Larsen, B.E., & Fuhrman, D.R. (2018). On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier–Stokes models. Journal of Fluid Mechanics, 853, 419 - 460.
    [20] Larsen, B.E., Fuhrman, D.R., & Roenby, J. (2019). Performance of interFoam on the simulation of progressive waves. Coastal Engineering Journal, 61, 380 - 400.
    [21] Luhar, M., & Nepf, H.M. (2011). Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography, 56, 2003-2017.
    [22] Menter, F.R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model.
    [23] Mirjalili, B.S., Jain, S.S., & Dodd, M.S. (2017). Interface-capturing methods for two-phase flows : An overview and recent developments.
    [24] Münsch, M., & Breuer, M. (2011). Numerical Simulation of Fluid–Structure Interaction Using Eddy–Resolving Schemes.
    [25] Pedersen, J.R., Larsen, B.E., Bredmose, H., & Jasak, H. (2017). A New Volume-Of-Fluid Method in Openfoam.
    [26] Rege, K., & Hjertager, B.H. (2017). Application of foam-extend on turbulent fluid-structure interaction.
    [27] Roenby, J., Bredmose, H., & Jasak, H. (2016). A computational method for sharp interface advection. Royal Society Open Science, 3.
    [28] Roenby, J., Bredmose, H., & Jasak, H. (2019). IsoAdvector: Geometric VOF on General Meshes. OpenFOAM®.
    [29] Tuković, Ž., Bukač, M., Cardiff, P., Jasak, H., & Ivanković, A. (2019). Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure. OpenFOAM®.
    [30] van Veelen, T.J., Karunarathna, H., & Reeve, D.E. (2020). Modelling wave attenuation by quasi-flexible coastal vegetation. Coastal Engineering, 103820.
    [31] Wang, J., He, G., You, R., & Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean Engineering, 158, 1-14.
    [32] Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., & Hwang, K.-S. (2012). Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering, 62, 31-47.

    下載圖示 校內:2025-07-18公開
    校外:2025-07-18公開
    QR CODE