| 研究生: |
陳潮鋒 Chan, Chio-Fong |
|---|---|
| 論文名稱: |
孤立波與雙潛沒式彈性結構物交互作用之數值模擬 Numerical Simulation of Solitary Wave Interaction with Double Submerged Elastic Structures |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 流固耦合 、OpenFOAM 、IsoAdvector 、stabilized k-ωSST 、孤立波 |
| 外文關鍵詞: | FSI, OpenFOAM, IsoAdvector, stabilized k-ωSST, solitary wave |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流體與結構物之間的交互作用為多物理場問題。當結構物為彈性體時,該交互作用更為複雜。本研究使用的數值模式為基於C++程式語言與有限體積法開發的開源CFD軟體OpenFOAM,透過求解器solids4Foam控制流體與固體求解器分別求解流體與固體的控制方程式並於流固交界面進行數據交換,實現彈性體的流固耦合模擬。流體的控制方程式使用Reynolds-Averaged Navier-Stokes;彈性結構物的本構關係式使用Saint Venant-Kirchhoff Law。另外,本研究引入stabilized k-ωSST紊流模式(Larsen & Fuhrman, 2018)改善紊流強度高估的問題,並引入幾何流體體積法IsoAdvector (Roenby & Jasak, 2016)進行介面重建以得到更準確的自由液面。本研究首先以Wu et al. (2012)的實驗配置模擬孤立波通過單個潛沒式垂直剛性結構物,分析自由液面演化、速度場分布、渦度場演化,以及紊流強度分布並與Wu et al. (2012)實驗結果比較,驗證本數值模式模擬孤立波與潛沒式結構物的強非線性交互作用之適用性。接著本研究進一步模擬孤立波通過單個潛沒式垂直彈性結構物,分析速度場分布、紊流強度分布,以及彈性結構物的受力、位移並與實驗結果比較,驗證本數值模式模擬兩相流與彈性體的流固耦合之適用性,以及本數值模式預測潛沒式彈性結構物運動的能力。
最後,本研究進一步延伸模擬孤立波通過間隔一定距離的雙潛沒式垂直彈性結構物,分析不同水平間距的雙潛沒式彈性結構物之彈性效應對流場的影響。
In the present study, the process of solitary wave interaction with double submerged elastic structures is simulated by an open-source software-OpenFOAM, where a fluid-structure interaction toolbox solids4Foam is employed to perform a strong coupling partitioned approach. Wave generation and absorption are performed by the wave generation toolbox waves2Foam. The incompressible fluid is described by Reynolds-Averaged Navier-Stokes equations, turbulence modeling is performed by the stabilized k-ωSST turbulence closure model, the free surface is captured by GVOF IsoAdvector, and the deformation of the elastic structure is described by Saint Venant-Kirchhoff Law. There are two experiments to validate the accuracy of the numerical model. In the first experiments, the solitary wave passing through the submerged rigid structure is considered to confirm that the numerical model is capable of simulating the strongly nonlinear interaction of a solitary wave with the submerged structure. In the other experiments, the solitary wave passing through the submerged elastic structure is considered to confirm the ability of the numerical model to simulate the water wave interaction with the elastic structure. Finally, the solitary wave interaction with the double submerged elastic structure at various distances is considered. The evolution of the free surface, velocity fields, turbulence intensity fields, displacement of the elastic structure, force acting on the elastic structure, and the coefficients of reflection and transmission are analyzed.
[1] 蕭郁、蕭士俊,2020。二維孤立波通過平板試驗。第44屆全國力學會議 (2020年11月)。
[2] Baek, H., & Karniadakis, G.E. (2012). A convergence study of a new partitioned fluid-structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys., 231, 629-652.
[3] Boshenyatov, B.V. (2013). Suppression of tsunami waves by underwater obstacles. Doklady Physics, 58, 453-456.
[4] Boshenyatov, B.V., & Zhiltsov, K.N. (2016). Simulation of the interaction of tsunami waves with underwater barriers.
[5] Brummelen, V.E. (2011). Partitioned iterative solution methods for fluid–structure interaction. International Journal for Numerical Methods in Fluids, 65, 3-27.
[6] Cardiff, P., Karavc, A., Jaeger, P.D., Jasak, H., Nagy, J., Ivankovi'c, A., & Tukovi'c, V. (2018). An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. arXiv: Numerical Analysis, 1-45.
[7] Collins, I., Hossain, M., Dettmer, W.G., & Masters, I. (2021). Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches. Renewable & Sustainable Energy Reviews, 151, 111478.
[8] Degroote, J. (2009). Partitioned Simulation of Fluid-Structure Interaction. Archives of Computational Methods in Engineering, 20, 185-238.
[9] Dettmer, W.G., Lovrić, A., Kadapa, C., & Peric, D. (2020). New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling. International Journal for Numerical Methods in Engineering.
[10] Devolder, B., Troch, P.A., & Rauwoens, P. (2018). Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM®. Coastal Engineering.
[11] Fridman, A.M., Alperovich, L.S., Shemer, L., Pustilnik, L.A., Shtivelman, D., Marchuk, A., & Liberzon, D. (2010). Tsunami wave suppression using submarine barriers. Physics-Uspekhi, 53, 809-816.
[12] Girfoglio, M., Quaini, A., & Rozza, G. (2021). Fluid-structure interaction simulations with a LES filtering approach in solids4Foam. Communications in Applied and Industrial Mathematics, 12, 13 - 28.
[13] Heil, M., Hazel, A.L., & Boyle, J. (2008). Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Computational Mechanics, 43, 91-101.
[14] Hewitt, S., Margetts, L., Revell, A.J., Pankaj, P., & Levrero-Florencio, F. (2019). OpenFPCI: A parallel fluid-structure interaction framework. Comput. Phys. Commun., 244, 469-482.
[15] Idelsohn, S.R., Pin, F.D., Rossi, R., & Oñate, E. (2009). Fluid–structure interaction problems with strong added‐mass effect. International Journal for Numerical Methods in Engineering, 80, 1261-1294.
[16] Jacobsen, N. G., Fuhrman, D. R., & Fredsøe, J. (2012). A wave generation toolbox for the open‐source CFD library: OpenFoam®. International Journal for numerical methods in fluids, 70(9), 1073-1088.
[17] Jasak, H., & Weller, H.G. (2000). Application of the finite volume method and unstructured meshes to linear elasticity. International Journal for Numerical Methods in Engineering, 48, 267-287.
[18] Küttler, U., & Wall, W.A. (2008). Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Mechanics, 43, 61-72.
[19] Larsen, B.E., & Fuhrman, D.R. (2018). On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier–Stokes models. Journal of Fluid Mechanics, 853, 419 - 460.
[20] Larsen, B.E., Fuhrman, D.R., & Roenby, J. (2019). Performance of interFoam on the simulation of progressive waves. Coastal Engineering Journal, 61, 380 - 400.
[21] Luhar, M., & Nepf, H.M. (2011). Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography, 56, 2003-2017.
[22] Menter, F.R., Kuntz, M., & Langtry, R. (2003). Ten Years of Industrial Experience with the SST Turbulence Model.
[23] Mirjalili, B.S., Jain, S.S., & Dodd, M.S. (2017). Interface-capturing methods for two-phase flows : An overview and recent developments.
[24] Münsch, M., & Breuer, M. (2011). Numerical Simulation of Fluid–Structure Interaction Using Eddy–Resolving Schemes.
[25] Pedersen, J.R., Larsen, B.E., Bredmose, H., & Jasak, H. (2017). A New Volume-Of-Fluid Method in Openfoam.
[26] Rege, K., & Hjertager, B.H. (2017). Application of foam-extend on turbulent fluid-structure interaction.
[27] Roenby, J., Bredmose, H., & Jasak, H. (2016). A computational method for sharp interface advection. Royal Society Open Science, 3.
[28] Roenby, J., Bredmose, H., & Jasak, H. (2019). IsoAdvector: Geometric VOF on General Meshes. OpenFOAM®.
[29] Tuković, Ž., Bukač, M., Cardiff, P., Jasak, H., & Ivanković, A. (2019). Added Mass Partitioned Fluid–Structure Interaction Solver Based on a Robin Boundary Condition for Pressure. OpenFOAM®.
[30] van Veelen, T.J., Karunarathna, H., & Reeve, D.E. (2020). Modelling wave attenuation by quasi-flexible coastal vegetation. Coastal Engineering, 103820.
[31] Wang, J., He, G., You, R., & Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean Engineering, 158, 1-14.
[32] Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., & Hwang, K.-S. (2012). Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering, 62, 31-47.