| 研究生: |
郭啟懿 Kuo, Chi-Yi |
|---|---|
| 論文名稱: |
應用於高功率元件之黏晶膠研究 A Study on Die-Attach Pastes with High Thermal Conductivity for High Power Device Application |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 錫膏 、銅 、置換反應 、銅銀核殼結構 、奈米銀 |
| 外文關鍵詞: | Solder, Copper, Replacement reaction, Copper-silver core-shell structure, nano-silver |
| 相關次數: | 點閱:119 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電子元件的高功率密度及高溫操作等需求持續增長,對於傳輸速度或功率密度等功能更是重視,因此電子構裝工業對於內部互連技術相當重視,而耐高溫需求的焊錫材料或黏晶技術則是支援功率元件運作的關鍵材料及技術,另外為了適應當前電子組裝技術的無鉛化發展,無鉛焊料已經成為表面組裝技術中最重要的電子構裝技術,並且為了滿足微間隙、高密度、高精度、高可靠性的元件組裝技術要求,各大廠紛紛投入研發,在此趨勢下本論文將針對於高溫焊接新型導電技術進行探討。
本論文分為兩部分探討。
第一部分,近年來奈米金屬材料燒結技術在業界中也得到廣泛的運用,奈米化後整體的表面積大幅增加,進而可在燒結過程中,使奈米金屬在較低的反應溫度中進行燒結反應。金屬銀擁有優異的導電導熱性能,而奈米銀粒子能有效降低製程、接合溫度,但是此方法仍有價格高昂之主要問題,而金屬銅同樣也具有優異的導電導熱特性,但是銅仍然有容易氧化的問題,所以如何在使用奈米金屬燒結技術時使用能達到相同效果之材料但降低其使用成本,也成了未來的發展趨勢,本實驗秉持以上所匯聚之觀點,製造一種藉由奈米銀包覆於銅表面之核殼結構以降低銅金屬表面與空氣接觸,達到抗氧化且降低成本的要求。再來利用製備完成的銅銀核殼結構之粉末,依需求添加所需的溶劑,並且加入黏結劑、分散劑、增稠劑等等有機成分,改變其流變狀態及分散行為,使其適用於接著製程。
第二部分,高溫焊料在以目前市場上仍然佔有一定的市占率,儘管近年來以有不少研究開發無鉛焊料,但仍有導電性及導熱性不足之主要問題。綜上所述,本實驗將錫膏燒結後,於金屬錫表面置換大量金屬銅,使其覆蓋於金屬錫之表面,此方式對於提升錫膏的導電率及導熱率都有極大的幫助,且由於置換反應機制操作簡單、成本較低,符合市場需求。
本論文綜合上述所提及之兩種不同實驗方法,期望達到業界以現有機台增加些許步驟或是降低其購買新材料之成本,能夠有效符合量產效益。本研究使用四點探針、掃描式電子顯微鏡、金相顯微鏡、推力測試機、X光繞射儀等儀器來交叉比對並解釋實驗結果。
透過實驗跟分析,在銅銀核殼結構研究中我們發現奈米銀低溫熔融特性確實幫助銅金屬顆粒間之熔接,形成連續導電面。本實驗結果制備出奈米銀包覆率達90%以上之銅銀核殼結構複合粉體,有效形成核殼結構,達到可低溫燒結的特性,並且應用於晶片接著技術上時擁有優異的導熱性能以及拉伸強度。
另外針對錫銅置換反應我們也瞭解粉體含量的選擇對於不同焊接材料有不同的要求,藉由針對不同反應時間之錫膏也瞭解到置換銅厚度之極限,置換時間拉得越長銅表面沉積得越完整。相較於業界使用之高溫焊料規格體積電阻率普遍要求小於1×10-6Ω·m,此實驗製備之銅電阻率遠低於其標準要求達到了1.3×10-7Ω·m,故可知將錫上置換銅的確能有效的提升其導電率。
The interconnect technology remains under high focus for packaging. The solder or the die-attach material has to withstand high temperatures generated during device functioning. For fitting the free-Pb requirement of the development of electronic products oriented to microstructure, thin type and high precision, the free- Pb solder paste has been one of the most significant and inevitable electronic accessories, which quality directly related to the quality of surface mount components.
We study on two parts. In the first part of this study, we would look into the sintering technique of nano-metal materials. Since the surface area increases dramatically as the material is in nanoscale, the nano-metal powder can be sintered at a lower temperature; therefore, there is a wide application of nano-metal materials in industry.
Silver (Ag) has an ideal electrical conductivity and an ideal thermal conductivity, and its nano-particle can decrease the process temperature effectively, but the main problem of this material is the expensive cost. Additionally, Copper (Cu) also has an ideal electrical conductivity and an ideal thermal conductivity, but it oxidizes easily. Therefore, a material that includes the ideal properties of electrical conductivity and thermal conductivity with low price is going to be a future trend. In this study, we prepare a material which has a core-shell structure that nano-Ag is covered on Cu powder to prevent the oxidation of Cu and achieve the low-cost.
The study of Lead-free (Pb-free) solder is in the second part of this study. Though there are lots of research in Pb-free solder, the problems in less electrical conductivity and thermal conductivity still need to be improved. Therefore, a replacement reaction of Tin (Sn) with Cu on the surface is introduced to our study. By this reaction, the electrical conductivity and thermal conductivity of the sintered Sn paste are extremely improved. Furthermore, the fabrication of replacement reaction is easy and low-cost, and is suitable for market demand.
[1]Yamada, Yasushi, et al. "Pb-free high temperature solders for power device packaging." Microelectronics Reliability 46.9 (2006): 1932-1937.
[2]Jang, Jin-Wook, et al. "Spalling of Cu 3 Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization during solid-state annealing." Journal of applied physics 95.12 (2004): 8286-8289.
[3]Suganuma, Katsuaki, Seong-Jun Kim, and Keun-Soo Kim. "High-temperature lead-free solders: Properties and possibilities." JOM Journal of the Minerals, Metals and Materials Society 61.1 (2009): 64-71.
[4]Shahrul Fadzli, M. Z., et al. "Bismuth-Antimony as an Alternative for High Temperature Lead Free Solder." Advanced Materials Research. Vol. 476. Trans Tech Publications, 2012.
[5]Watanabe, Itsuo, et al. "Recent advances of interconnection technologies using anisotropic conductive films in flat panel display applications." Advanced Packaging Materials: Processes, Properties and Interfaces, 2004. Proceedings. 9th International Symposium on. IEEE, 2004.
[6]LaQue, Francis Laurence, and Harry Rollason Copson, eds. Corrosion resistance of metals and alloys. Vol. 158. Reinhold Publishing Corporation, 1963.
[7]Huh, Seok-Hwan, Keun-Soo Kim, and Katsuaki Suganuma. "Effect of Au addition on microstructural and mechanical properties of Sn-Cu eutectic solder." Materials Transactions 43.2 (2002): 239-245.
[8]Scheuermann, U., and P. Wiedl. "Low temperature joining technology-a high reliability alternative to solder contacts." Workshop on Melal Ceramic Composites for Functional Applications. 1997.
[9]Hamilton, R. L., and O. K. Crosser. "Thermal conductivity of heterogeneous two-component systems." Industrial & Engineering chemistry fundamentals 1.3 (1962): 187-191.
[10]Bai, John Guofeng, et al. "High-temperature operation of SiC power devices by low-temperature sintered silver die-attachment." IEEE transactions on advanced packaging 30.3 (2007): 506-510.
[11]Tang, Xiao-Feng, Zhen-Guo Yang, and Wei-Jiang Wang. "A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology." Colloids and Surfaces A: Physicochemical and Engineering Aspects 360.1 (2010): 99-104.
[12]Hollemann, Arnold F., E. Wiberg, and N. Wiberg. "Lehrbuch der Anorganischen Chemie (91.-100.)." Auflage (W. de Gruyter, Berlin 1985) p 621 (1985).
[13]Hammond, C. R. The Elements, in Handbook of Chemistry and Physics 81st. CRC press. 2004. ISBN 0-8493-0485-7.
[14]Burda, Clemens, et al. "Chemistry and properties of nanocrystals of different shapes." Chemical reviews 105.4 (2005): 1025-1102.
[15]M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, M. Takata, J. Am. Chem. Soc. 133 (2011) 1150.
[16]Sun, Yugang, Brian Mayers, and Younan Xia. "Metal nanostructures with hollow interiors." Advanced Materials 15.7‐8 (2003): 641-646.
[17]William M. Haynes, “Handbook of Chemistry and Physics, 93rd edition”,CRC,2012
[18]Kirkpatrick, Scott. "Percolation and conduction." Reviews of modern physics 45.4 (1973): 574.
[19]Ruschau, G. R., S. Yoshikawa, and R. E. Newnham. "Resistivities of conductive composites." Journal of applied physics 72.3 (1992): 953-959.
[20]Block, H., and J. P. Kelly. "Electro-rheology." Journal of Physics D: Applied Physics 21.12 (1988): 1661.
[21]Landauer, Rolf. "Electrical conductivity in inhomogeneous media." AIP conference proceedings. Vol. 40. No. 1. AIP, 1978.
[22]Yang, Xiaojian, et al. "Preparation and properties of a novel electrically conductive adhesive using a composite of silver nanorods, silver nanoparticles, and modified epoxy resin." Journal of Materials Science: Materials in Electronics 23.1 (2012): 108-114.
[23]朱晓云. 银包铜粉及聚合物导体浆料制备与性能研究 [D]. Diss. 昆明理工大学, 2011.
[24]Veronovski, N., et al. "Stable TiO 2 dispersions for nanocoating preparation." Surface and Coatings Technology 204.9 (2010): 1445-1451.
[25]蕭章能, and 朝春光. 以高分子分散劑作為奈米粉體濕式分散研磨, 界面改質及合成的研究. Diss. 2007.
[26]李文良, 赵奇金, and 方政秋. "化学镀银在复合粉体中的应用及研究进展." 电镀与精饰 35.6 (2013): 16-20.
[27]李雅丽, 付新, and 党蕊. 乙二醇介质中铜微粉表面化学镀银的研究. Diss. 2012.
[28]张杰磊, and 郭忠诚. "表面活性剂对铜粉表面酸性化学镀银的影响." 电镀与涂饰 34.8 (2015): 422-426.
[29]Wang, Tao, et al. "Low-temperature sintering with nano-silver paste in die-attached interconnection." journal of electronic materials 36.10 (2007): 1333-1340.
[30]Lu, Guo-Quan, et al. "A lead-free, low-temperature sintering die-attach technique for high-performance and high-temperature packaging." High Density Microsystem Design and Packaging and Component Failure Analysis, 2004. HDP'04. Proceeding of the Sixth IEEE CPMT Conference on. IEEE, 2004.
[31]Reed, TracyR. Development and testing of liquid crystal polymer solid rocket motors. ADA304707MF, 363.
[32]JamesS B.Solid rocket propulsion applicationsFor advanced polymers [R] .ADA304707MF,103 ~ 110 .
[33]吴良义, 罗兰, and 温晓蒙. "热固性树脂基体复合材料的应用及其工业进展." 熱固性樹脂 23.S (2008): 22-31.
[34]鄧公駿, and 張豐志. Epoxy/Phenoxy 熱固型/熱塑型高分子合金. Diss. 1991.
[35]Ping, Chen, et al. "Study on the properties of cured compound in cyanate/epoxy co-curing system." Properties and Applications of Dielectric Materials, 2000. Proceedings of the 6th International Conference on. Vol. 2. IEEE, 2000.
[36]Qing, Yuchang, et al. "Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings." Journal of Magnetism and Magnetic Materials 321.1 (2009): 25-28.
[37]Wakuda, Daisuke, Keun-Soo Kim, and Katsuaki Suganuma. "Ag nanoparticle paste synthesis for room temperature bonding." IEEE Transactions on components and packaging technologies 33.2 (2010): 437-442.
[38]O'hara, Kevin J., and Howard J. Kilvington. "Rheological agents." U.S. Patent No. 4,128,436. 5 Dec. 1978.
[39]Ricci, Anthony P., Alfred J. Whitton, and Hemi N. Nae. "Rheological agents and thickeners." U.S. Patent No. 5,164,433. 17 Nov. 1992.
[40]吴存坤, and 刘瑜. "厚膜导电浆料的组成及银粉在其中的应用." 上海化工 41.2 (2016): 17-20.
[41]Chidambaram, Vivek, Jesper Hattel, and John Hald. "High-temperature lead-free solder alternatives." Microelectronic Engineering 88.6 (2011): 981-989.
[42]Zhang, Yifei, et al. "The effects of SAC alloy composition on aging resistance and reliability." Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. IEEE, 2009.
[43]Gray, B. L., et al. "Novel interconnection technologies for integrated microfluidic systems." Sensors and Actuators A: Physical 77.1 (1999): 57-65.
[44]Hornbogen, E. "Review Thermo-mechanical fatigue of shape memory alloys." Journal of materials science 39.2 (2004): 385-399.
[45]Wong, C. P., and Raja S. Bollampally. "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging." Journal of Applied Polymer Science 74.14 (1999): 3396-3403.
[46]Wu, C. M. L., et al. "Properties of lead-free solder alloys with rare earth element additions." Materials Science and Engineering: R: Reports 44.1 (2004): 1-44.
[47]Langan, Timothy, Michael A. Riley, and W. Mark Buchta. "Reactive shaped charges and thermal spray methods of making same." U.S. Patent No. 7,278,353. 9 Oct. 2007.
[48]Burge, P. S., et al. "Respiratory disease in workers exposed to solder flux fumes containing colophony (pine resin)." Clinical & Experimental Allergy 8.1 (1978): 1-14.
[49]Ekere, N. N., D. He, and L. Cai. "The influence of wall slip in the measurement of solder paste viscosity." IEEE Transactions on Components and Packaging Technologies 24.3 (2001): 468-473.