簡易檢索 / 詳目顯示

研究生: 李佩鈴
Lee, Pei-Ling
論文名稱: 經太陽光化學轉化後氧化石墨烯的抗菌毒性
Antibacterial Toxicity of Photochemically Transformed Graphene Oxide
指導教授: 侯文哲
Hou, Wen-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 67
中文關鍵詞: 氧化石墨烯奈米技術轉化與宿命生態毒性
外文關鍵詞: graphene oxide, nanotechnology, fate and transformation, ecotoxicity
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維奈米碳材中包含了石墨烯和氧化石墨烯,其中氧化石墨烯因材料特性及相容性的優勢上,在生醫、電子、環境以及能源等等領域中擁有前瞻性應用而引起了廣大的研究風潮。然而在這些廣泛開發應用前進行環境生態影響評估是非常重要的步驟。在過去研究顯示,氧化石墨烯在全幅模擬太陽光下被光逐漸反應成較小且失去含氧官能基的產物,故本研究目的是對於光照前後的氧化石墨烯其抗菌毒性。藉由透過直接光照與含有氫氧自由基的間接光照的結果中,我們發現格蘭式陰性菌的大腸桿菌(E. coli)對於初始氧化石墨烯的最小抑制濃度(MIC)為5 mg/L及其半數抑制濃度(IC50)為5.03 ± 1.75 mg/L。有趣的是相較於未光照的氧化石墨烯在直接光照具有較強的抗菌毒性,而間接光照反應後的氧化石墨烯顯示相反的毒性結果。探討材料特性變化後,造就毒性增強的可能原因是直接光解的去除部分官能基與/或粒徑變小,而毒性降低則主要歸因於在間接光照下氧化石墨烯質量濃度大幅下降。
    此外,本研究也探討氧化石墨烯其抗菌毒性的潛在機制,利用細菌的細胞膜完整性、胞內抗氧化劑穀胱甘肽的耗損、以及活性氧化物質分析。結果顯示氧化石墨烯促使細菌產生明顯聚集現象,暴露直接光照反應後的氧化石墨烯導致細菌外表嚴重變形,更進一步了解發現隨著直接光照時間增加,產生的氧化石墨烯中間產物能夠耗損較多的穀胱甘肽以及產生更多的活性氧化物質。總結各項結果發現光反應後氧化石墨烯抗菌毒性機制之一可能為氧化壓力。簡而言之,本研究顯示環境光化學轉化對於氧化石墨烯的抗菌活性有關鍵的影響。

    Two-dimensional carbon-based nanomaterials, including graphene and graphene oxide (GO), have attracted great research interests for their potential applications in biomedical, electronics, energy, and materials areas. Ecological impacts of these materials must be properly evaluated prior to their widespread use. Previous research has shown that GO can be phototransformed under simulated sunlight exposure, forming products with progressively reduced sizes and oxygen-containing functionalities. The aim of this work was to examine the antibacterial toxicity of GO before and after photoreactions. Photoproducts generated by direct photolysis and indirect photolysis in which hydroxyl radical was involved were examined. We found that Gram negative Escherichia coli (E. coli) had a minimum inhibitory concentration (MIC) of 5 mg/L and a half maximal inhibitory concentration (IC50) of 5.03 ± 1.75 mg/L for parent GO. Interestingly, GO derivatives produced by direct photoreduction exhibited stronger antibacterial effects than parent GO, while GO samples after indirect photoreaction showed opposite results (i.e., reduced toxicity). The enhanced toxicity correlates with the reduced functional groups and/or sizes after direct photolysis, while the reduced toxicity may be mainly attributed to the significantly decreased mass concentration after indirect photolysis.
    Another part of this research was to evaluate the potential mechanisms behind the observed antibacterial toxicity. The whole cell and membrane integrities, the depletion of glutathione (GSH), an intracellular antioxidant, and reactive oxygen species (ROS) formation were examined. We found that the cell deformation occurred upon exposure to GO samples irradiated for a longer time period under direct photolysis conditions and that bacterial cells strongly aggregated in the presence of GO. The increased cell membrane permeability was observed after exposure to GO. Increased irradiation time period under direct photolysis conditions resulted in intermediate products with greater capabilities in GSH depletion and ROS formation. Taken together, the results point to the oxidative stress-mediated antibacterial toxicity. Overall the findings of this work indicate that phototransformed GO exhibits different antibacterial toxicity from parent GO.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT IV CONTENTS V LIST OF TABLE VII LIST OF FIGURE VIII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 Graphene and graphene oxide 3 2.1.1 Physicochemical characteristics 3 2.1.2 Formation and Applications of GO 4 2.1.3 Photochemical transformation in sunlight 5 2.2 Antibacterial toxicity of nanomaterials 9 2.2.1 Gram-negative bacteria and Gram-positive bacteria 10 2.2.2 Antibacterial toxicity of graphene and graphene oxide 12 2.3 Toxicity mechanisms of graphene oxide against bacteria 14 2.4 Study framework 19 CHAPTER 3 MATERIALS AND METHODS 21 3.1 Materials 21 3.2 Irradiation of GO 21 3.3 Antibacterial toxicity studies 23 3.3.1 Cell culture preparation. 23 3.3.2 Exposure experiments 24 3.4 Mechanistic studies 27 3.4.1 Membrane integrity 27 3.4.2 Antioxidant depletion 29 3.4.3 Reactive Oxygen Species (ROS) 31 3.5 Analysis 34 CHAPTER 4 RESULTS AND DISCUSSIONS 36 4.1 Characterizations of GO before and after photoreactions 36 4.1.1 Direct photolysis 36 4.1.2 Indirect photolysis with H2O2 present 40 4.2 Antibacterial toxicity 43 4.2.1 Antibacterial toxicity of parent GO 43 4.2.2 Antibacterial toxicity of phototransformed GO 45 4.3 Mechanisms of toxicity 47 4.3.1 Cell structure 47 4.3.2 Membrane integrity 48 4.3.3 Ellman Assay by Glutathione (GSH) 50 4.3.4 Reactive Oxygen Species (ROS) 52 CHAPTER 5 CONCLUSIONS 55 5.1 Conclusions 55 5.2 Environmental implication 57 REFERENCES 58 Appendix 64

    (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666–669.
    (2) Geim, A. K. Graphene: Status and Prospects. Science 2009, 324 (5934), 1530–1534.
    (3) Perreault, F.; Faria, A. F. de; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015.
    (4) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906–3924.
    (5) Kim, F.; Cote, L. J.; Huang, J. Graphene Oxide: Surface Activity and Two-Dimensional Assembly. Adv. Mater. 2010, 22 (17), 1954–1958.
    (6) Cote, L. J.; Kim, J.; Tung, V. C.; Luo, J.; Kim, F.; Huang, J. Graphene oxide as surfactant sheets. Pure Appl. Chem. 2010, 83 (1).
    (7) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339–1339.
    (8) Hu, X.; Zhou, Q. Health and Ecosystem Risks of Graphene. Chem. Rev. 2013, 113 (5), 3815–3835.
    (9) Zhao, J.; Wang, Z.; White, J. C.; Xing, B. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ. Sci. Technol. 2014, 48 (17), 9995–10009.
    (10) Hou, W.-C.; Chowdhury, I.; Goodwin, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard, D.; Zepp, R. G. Photochemical Transformation of Graphene Oxide in Sunlight. Environ. Sci. Technol. 2015, 49 (6), 3435–3443.
    (11) Chowdhury, I.; Hou, W.-C.; Goodwin, D.; Henderson, M.; Zepp, R. G.; Bouchard, D. Sunlight Affects Aggregation and Deposition of Graphene Oxide in the Aquatic Environment. Water Res.
    (12) K Mopper, X. Z. Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science 1990, 250 (4981), 661–664.
    (13) Vaughan, P. P.; Blough, N. V. Photochemical Formation of Hydroxyl Radical by Constituents of Natural Waters. Environ. Sci. Technol. 1998, 32 (19), 2947–2953.
    (14) Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560–10564.
    (15) Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4 (4), 217–224.
    (16) Hua Bai, C. L. Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater. Deerfield Beach Fla 2011, 23 (9), 1089–1115.
    (17) Zhou, X.; Zhang, Y.; Wang, C.; Wu, X.; Yang, Y.; Zheng, B.; Wu, H.; Guo, S.; Zhang, J. Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano 2012, 6 (8), 6592–6599.
    (18) Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320 (5874), 356–358.
    (19) Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; et al. Graphene at the Edge: Stability and Dynamics. Science 2009, 323 (5922), 1705–1708.
    (20) Bacon, M.; Bradley, S. J.; Nann, T. Graphene Quantum Dots. Part. Part. Syst. Charact. 2014, 31 (4), 415–428.
    (21) Ishii, S.; Sadowsky, M. J. Escherichia coli in the Environment: Implications for Water Quality and Human Health. Microbes Environ. 2008, 23 (2), 101–108.
    (22) Standards, N. C. for C. L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; NCCLS, 1999.
    (23) Cabeen, M. T.; Jacobs-Wagner, C. Bacterial cell shape. Nat. Rev. Microbiol. 2005, 3 (8), 601–610.
    (24) Jiang, W.; Mashayekhi, H.; Xing, B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 2009, 157 (5), 1619–1625.
    (25) Wang, Z.; Lee, Y.-H.; Wu, B.; Horst, A.; Kang, Y.; Tang, Y. J.; Chen, D.-R. Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 2010, 80 (5), 525–529.
    (26) Tsuang, Y.-H.; Sun, J.-S.; Huang, Y.-C.; Lu, C.-H.; Chang, W. H.-S.; Wang, C.-C. Studies of Photokilling of Bacteria Using Titanium Dioxide Nanoparticles. Artif. Organs 2008, 32 (2), 167–174.
    (27) Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346.
    (28) Hajipour, M. J.; Fromm, K. M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I. R. de; Rojo, T.; Serpooshan, V.; Parak, W. J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30 (10), 499–511.
    (29) Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.-H.; Yun, K.; Kim, S. J. Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria via Lipid Peroxidation. J. Phys. Chem. C 2012, 116 (32), 17280–17287.
    (30) Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4 (10), 5731–5736.
    (31) Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano 2010, 4 (7), 4317–4323.
    (32) Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5 (9), 6971–6980.
    (33) Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J.-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine 2012, 7, 5901–5914.
    (34) Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50 (5), 1853–1860.
    (35) Zanni, E.; De Bellis, G.; Bracciale, M. P.; Broggi, A.; Santarelli, M. L.; Sarto, M. S.; Palleschi, C.; Uccelletti, D. Graphite Nanoplatelets and Caenorhabditis elegans: Insights from an in Vivo Model. Nano Lett. 2012, 12 (6), 2740–2744.
    (36) Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6 (3), 1879–1889.
    (37) Pretti, C.; Oliva, M.; Pietro, R. D.; Monni, G.; Cevasco, G.; Chiellini, F.; Pomelli, C.; Chiappe, C. Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol. Environ. Saf. 2014, 101, 138–145.
    (38) Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009, 8 (7), 543–557.
    (39) Soenen, S. J.; Rivera-Gil, P.; Montenegro, J.-M.; Parak, W. J.; De Smedt, S. C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6 (5), 446–465.
    (40) Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano 2010, 4 (9), 5471–5479.
    (41) Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano 2015.
    (42) Creighton, M. A.; Rangel-Mendez, J. R.; Huang, J.; Kane, A. B.; Hurt, R. H. Graphene-Induced Adsorptive and Optical Artifacts During In Vitro Toxicology Assays. Small 2013, 9 (11), 1921–1927.
    (43) Horst, A. M.; Vukanti, R.; Priester, J. H.; Holden, P. A. An Assessment of Fluorescence- and Absorbance-Based Assays to Study Metal-Oxide Nanoparticle ROS Production and Effects on Bacterial Membranes. Small 2013, 9 (9-10), 1753–1764.
    (44) Priester, J. H.; Singhal, A.; Wu, B.; Stucky, G. D.; Holden, P. A. Integrated approach to evaluating the toxicity of novel cysteine-capped silver nanoparticles to Escherichia coli and Pseudomonas aeruginosa. Analyst 2014, 139 (5), 954–963.
    (45) Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23 (17), 8670–8673.
    (46) Yang, C.; Mamouni, J.; Tang, Y.; Yang, L. Antimicrobial Activity of Single-Walled Carbon Nanotubes: Length Effect. Langmuir 2010, 26 (20), 16013–16019.
    (47) Romero-Vargas Castrillón, S.; Perreault, F.; de Faria, A. F.; Elimelech, M. Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy. Environ. Sci. Technol. Lett. 2015, 2 (4), 112–117.
    (48) Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir 2008, 24 (13), 6409–6413.
    (49) Tsao, N.; Luh, T.-Y.; Chou, C.-K.; Chang, T.-Y.; Wu, J.-J.; Liu, C.-C.; Lei, H.-Y. In vitro action of carboxyfullerene. J. Antimicrob. Chemother. 2002, 49 (4), 641–649.
    (50) Lyon, D. Y.; Fortner, J. D.; Sayes, C. M.; Colvin, V. L.; Hughes, J. B. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Toxicol. Chem. 2005, 24 (11), 2757–2762.
    (51) Lyon, D. Y.; Adams, L. K.; Falkner, J. C.; Alvarez, P. J. J. Antibacterial Activity of Fullerene Water Suspensions:  Effects of Preparation Method and Particle Size†. Environ. Sci. Technol. 2006, 40 (14), 4360–4366.
    (52) Hamilton, M. A.; Russo, R. C.; Thurston, R. V. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11 (7), 714–719.
    (53) LIVE/DEAD BacLight Bacterial Viability Kit, for microscopy - Life Technologies https://www.lifetechnologies.com/order/catalog/product/L7007 (accessed Jul 1, 2015).
    (54) Pompella, A.; Visvikis, A.; Paolicchi, A.; Tata, V. D.; Casini, A. F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003, 66 (8), 1499–1503.
    (55) Lyon, D. Y.; Brunet, L.; Hinkal, G. W.; Wiesner, M. R.; Alvarez, P. J. J. Antibacterial Activity of Fullerene Water Suspensions (nC60) Is Not Due to ROS-Mediated Damage. Nano Lett. 2008, 8 (5), 1539–1543.
    (56) Lyon, D. Y.; Alvarez, P. J. J. Fullerene Water Suspension (nC60) Exerts Antibacterial Effects via ROS-Independent Protein Oxidation. Environ. Sci. Technol. 2008, 42 (21), 8127–8132.
    (57) Gauthier, T. D.; Shane, E. C.; Guerin, W. F.; Seitz, W. R.; Grant, C. L. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 1986, 20 (11), 1162–1166.
    (58) Kosaka, K.; Yamada, H.; Matsui, S.; Echigo, S.; Shishida, K. Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes:  Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environ. Sci. Technol. 1998, 32 (23), 3821–3824.
    (59) Baek, Y.-W.; An, Y.-J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011, 409 (8), 1603–1608.
    (60) Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. J. Phys. Chem. B 2011, 115 (19), 6279–6288.

    下載圖示 校內:2017-11-10公開
    校外:2017-11-10公開
    QR CODE