簡易檢索 / 詳目顯示

研究生: 吳勝男
Wu, Sheng-Nan
論文名稱: 以遞迴模糊類神經為基礎之語音增強研究
An Efficient Recurrent Neuro-Fuzzy System for Speech Enhancement
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 71
中文關鍵詞: 適應性噪音消除適應性濾波器主動式噪音消除
外文關鍵詞: active noise cancellation, adaptive noise cancellation, adaptive filter
相關次數: 點閱:114下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要是使用一新穎的遞迴模糊類神經濾波器(ARNFF)對吵雜的環境中做語音增強的處理,在語音增強的架構中包含兩個麥克風,一為接收主要音源;另一個接收參考輸入音源,並使用ARNFF濾波器衰減主噪音源路徑中的噪音。ARNFF 為六層連接網路,可以輕易的將網路架構轉換成一組動態模糊法則和狀態空間方程式。其學習演算法主要分為兩個部份—架構學習和參數學習演算法,架構學習部分是使用MCA群組化演算法自動建構遞迴模糊類神經網路架構,並得到最精簡的網路架構;參數學習則使用遞迴回歸學習演算法調整系統參數,取得系統的動態行為。在模擬的部份,與一些現存的濾波器做比較,驗證ARNFF對語音增強的處理能力有其優越的效果。本論文使用遞迴模糊類神經濾波器,針對吵雜環境之語音增強具有下列三優點:(1) ARNFF濾波器的建構可以經由MCA學習演算法得到最精簡的濾波器架構;(2) ARNFF濾波器設計時,不需要事先設定精確的濾波器輸入個數;(3) 使用遞迴回歸學習演算法之ARNFF濾波器在延遲較長的環境中做噪音消除具有優越的表現。

      This study developed a novel adaptive recurrent neuro-fuzzy filter (ARNFF) for speech enhancement in noisy environment. The speech enhancement scheme consists of two microphones that receive a primary and a reference input source respectively, and the ARNFF that attenuates the noise corrupting the original speech signal in the primary channel. The ARNFF is inherently a recurrent multilayered connectionist network that can be translated effortlessly into a set of dynamic fuzzy rules and state-space equations as well. An effective learning algorithm, consisting of a clustering algorithm for the structure learning and a recurrent learning algorithm for the parameter learning, has been developed for the ARNFF structure construction. From our computer simulations and comparisons with some existing filters, the advantages of the proposed ARNFF for noisy speech enhancement include: 1) a more compact filter structure, 2) no a priori knowledge needed for the exact lagged order of the input variables, 3) a better performance in long-delay environment.

    中文摘要 i 英文摘要 ii 目錄 iii 表目錄 v 圖目錄 vi 第一章 緒論 1-1 1.1 研究動機 1-1 1.2 研究背景 1-2 1.3 研究方法 1-4 1.4 章節提要 1-5 第二章 適應性噪音消除 2-1 2.1 主動式噪音消除之概念 2-1 2.2 主動噪音消除之基本原理 2-2 2.3 主動式噪音消除之架構 2-5 2.3.1 前饋式(Feedforward)噪音消除控制架構 2-5 2.3.2 回饋式(Feedback)噪音消除控制架構 2-6 2.3.3 混合式(Hybrid)噪音消除控制架構 2-7 第三章 遞迴模糊類神經濾波器 3-1 3.1 遞迴模糊類神經濾波器之架構 3-1 3.2 自適應學習演算法(Self-adaptive learning algorithm) 3-7 3.2.1 MCA群聚演算法(MCA clustering algorithm) 3-8 3.2.2 Ordered Derivative和即時回歸學習法則(RTRL) 3-12 3.2.3 遞迴回歸學習演算法(Recursive recurrent learning algorithm) 3-14 3.2.4 L-M學習演算法(Levenberg-Marquardt learning algorithms) 3-20 第四章 模擬結果與分析 4-1 4.1 ㄧ般環境之模擬 4-1 4.1.1 ARNFF濾波器之模擬(使用遞迴回歸學習演算法) 4-2 4.1.2 ARNFF濾波器之模擬(使用L-M學習演算法) 4-5 4.1.3 Elman濾波器之模擬 4-7 4.1.4 RAFF濾波器之模擬 4-9 4.1.5 FIR濾波器之模擬 4-11 4.2 延遲較長環境之模擬 4-12 第五章 結論與未來工作 5-1 5.1 結論 5-1 5.2 未來工作 5-2 參考文獻

    [1] L. L. Beranek and I. L. Ver, Noise and vibration control engineering: principles and applications, New York: Wiley, 1992.
    [2] S. J. Elliott and P. A. Nelson, “Active noise control,” IEEE Signal Processing Magazine, vol. 10, no. 4, pp. 12-35, Oct. 1993.
    [3] H. K. Park and S. G.. Kong, “Neuro-fuzzy control system for adaptive noise cancellation,” IEEE Fuzzy Systems Conference Proceedings, vol. 3, pp. 1465-1469, Aug. 1999.
    [4] B. Widrow, and J. R. Glover, “Adaptive noise canceling: principles and applications,” IEEE Proceedings, vol. 63, pp. 1692-1716, 1975.
    [5] S. M. Kuo and D. R. Morgan, “Active noise control: a tutorial review,” Proceeding of IEEE, vol. 87, no. 6, pp. 943-975, June 1999.
    [6] B. Widrow and S. D. Stearns, Adaptive signal processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.
    [7] W. Conover, “Fighting noise with noise,” Noise Control, vol. 92, pp. 78-82, 1956.
    [8] X. Kong, Pu Liu and S. M. Kuo, “Multiple channel hybrid active noise control system,” IEEE Trans. on Control System Technology, vol. 6, no. 6, pp. 719-729, Nov. 1998.
    [9] B. Hodson, “Shake, rattle and control,” IEE Review, vol. 43, no. 4, pp. 143-146, July 1997.
    [10] M. Jessel and G. A. Mangiante, “Active sound absorbers in an air duct,” Journal of Sound and Vibration, vol. 23, no. 3, pp. 383-390, 1972.
    [11] M. A. Swinbanks, “Active control of sound propagation in long ducts,” Journal of Sound and Vibration, vol. 27, no. 3, pp. 411-436, 1973.
    [12] J. C. Burgess, “Active adaptive sound control in a duct: a computer simulation,” J. Acoustic Soc. Am., vol. 70, no. 3, pp. 715-726, Sept. 1981.
    [13] C. F. Ross, “Active adaptive digital filter for broadband active sound control,” Journal of Sound and Vibration, vol. 80, no. 3, pp. 381-388.
    [14] S. J. Elliot, I. M. Stothers and P. A. Nelson, “A multiple error LMS algorithm and its application to the active control of sound and vibration,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 35, no. 10, pp. 1423-1434, April 1987.
    [15] L. J. Eriksson, M. C. Allie and R. A. Greiner, “The selection and application of an IIR adaptive filter for use in active sound attenuation,” IEEE Trans. on Acoustic, Speech, Signal Processing, vol. 35, no. 4, pp. 433-437, April 1987.
    [16] L. J. Erikssion and M. C. Allie, “Use of random noise for on-line transducer modeling in an adaptive active attenuation system,” J. Acoustic Soc. Am., vol. 85, no. 2, pp. 797-802, Feb. 1989.
    [17] R. T. Bambang, L. Anggono and K. Uchida, “DSP based RBF neural modeling and control for active noise cancellation,” Proceedings of the 2002 IEEE Int’l Symposium on Intelligent Control, pp. 460-466, Oct. 2002.
    [18] L. Tao and H. K. Kwan, “A neural network method for adaptive noise cancellation,” Proceedings of the 1999 IEEE Int’l Symposium on Circuits and Systems, vol. 5, pp. 567-570, 1999.
    [19] C. F. Jauang and C. T. Lin, “Noisy speech processing by recurrently adaptive fuzzy filters,” IEEE Trans. on Fuzzy Systems, vol. 9, no. 1, pp. 139-152, Feb. 2001.
    [20] M. Coker and D. Simkins, “A nonlinear adaptive noise canceller,” IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. 5, pp. 470-473, April 1980.
    [21] M. Bouchard, B. Paillard and C. T. L. Dinh, “Improved training of neural networks for nonlinear active control of sound and vibration,” IEEE Trans. on Neural Networks, vol. 10, no. 2, pp. 391-401, March 1999.
    [22] J. S. Wang and C. S. G. Lee, “Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle,” IEEE Trans. on Robotics and Automation, vol. 19, no. 2, pp. 283-295, April 2003.
    [23] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 807-814, Sept. 1992.
    [24] H. D. Nam, S. K. Hong and K. Han, “Active control of noise in an enclosure using hybrid control techniques,” Proceedings of 1997 Int’l Conf. on Information, Communications and Signal Processing, vol. 2, pp. 758-761, Sept. 1997.
    [25] S. M. Kuo, and D. R. Morgan, Active noise control system-algorithms and DSP implementations, New York: Wiley, 1996.
    [26] D. C. Swanson, “Active noise attenuation using a self-tuning regulator as the adaptive control algorithm,” Proc. Inter-noise, pp. 467-470, 1989.
    [27] M. Gori, M. Mozer, A. C. Tosi, and R. L. Watrous, “Presenting the special issue on recurrent neural networks for sequence processing,” Neurocomputing, vol. 15, no. 3-4, pp. 181-182, June 1997.
    [28] A.C. Tsoi and A. D. Back, “Locally recurrent globally feedforward networks: a critical review of architectures,” IEEE Trans. on Neural Networks, vol. 5, no. 2, pp. 229-239, March 1994.
    [29] A.C. Tsoi and A. D. Back, “Discrete time recurrent neural network architectures: a unifying review,” Neurocomputing, vol. 15, no. 3-4, pp. 183-223, June 1997.
    [30] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 807-814, Sept. 1992.
    [31] C. S. G. Lee and J. S. Wang, “Self-adaptive neuro-fuzzy systems: structure and learning,” Proceeding of 2000 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, Takamatsu, Japan, pp. 52-57, 2000.
    [32] J. S. Wang and C. S. G. Lee, “Efficient neuro-fuzzy control system for autonomous underwater vehicles,” Proceeding of 2001 IEEE Int’l Conf. on Robotics and Automation, Seoul, Korea, vol. 3, pp. 2986-2991, May 2001.
    [33] J. C. Bezdek, J. Keller, R. Krisnapuram and N. R. Pal, Fuzzy models and algorithms for pattern recognition and image processing, Boston: Kluwer Academic, 1999.
    [34] J. S. Wang and C. S. G. Lee, “Self-adaptive neuro-fuzzy inference system for classification applications,” IEEE Trans. on Fuzzy System, vol. 10, no. 6, 790-802, Dec. 2002.
    [35] P. Werbos, “Beyond regression: new tools for prediction and analysis in the behavior sciences,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, Aug. 1974.
    [36] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Englewood Cliffs, N.J.: Prentice-Hall, 1983.
    [37] L. Ljung and T. Soderstrom, Theory and practice of recursive identification, M.I.T. Press, Cambridge, Mass.: MIT Pr., 1983.
    [38] A. Varga, H.J. M. Steeneken, M. Tomlinson and D. Jones, “The NOISEX-92 study on the effect of additive noise automatic speech recognition,” Description of RSG. 10 and Esprit SAM Experiment and Database, Malvern, U.K.: DRA Speech Res., 1992.

    下載圖示 校內:2005-08-27公開
    校外:2005-08-27公開
    QR CODE