簡易檢索 / 詳目顯示

研究生: 許為珽
Xu, Wei-Ting
論文名稱: 微波合成二氧化錫作為金屬電子傳輸層並應用於反置型鈣鈦礦太陽能電池
Microwave-assisted Synthesis of SnO2 as Charge Extraction Layer for Inveryed Perovskite Solar Cells
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 微波合成二氧化錫鈣鈦礦太陽能電池PCBM
外文關鍵詞: perovskite, tin oxide, PCBM, Microwave
相關次數: 點閱:158下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鈣鈦礦太陽能電池(Perovskite Solar Cell)在空氣中容易水解,因此在反置型(p-i-n異質結構)電子傳輸層便成了保護主動層的關鍵因素,選擇電子傳輸層的主因不單單是能階匹配,而是也須考慮穩定性與製造成本。
    本研究是以聚焦式微波合成二氧化錫(Stannic Oxide,SnO2),以二氧化錫替換PCBM([6,6]-Pheny-C61 butyric acid methyl ester),藉此提升太陽能電池的壽命,且大幅降低製造成本。以兩種合成方式經由聚焦式微波合成二氧化錫之後,分析DLS與XRD找出其優劣與最佳濃度,再以乙醇或IPA進行替換,經由SEM分析其優劣。
    最後再以溶液製成(solution process)與旋轉塗佈(spin coating)的方式將SnO2奈米顆粒應用於p-i-in異質結構之元件。在進一步以薄膜緻密性改善降低崩潰電流的產生,且利用旋轉塗佈的轉速達到最佳的厚度,以達到最佳的光電流。

    The objective of this work is to obtain improved performance of perovskite solar cells (PSCs) based on Metal ETH. Metal oxide materials have been frequently used as hole transport layer, Instead of using the conventional hydro-thermo process with either water or Benzyl alcohol as solvent, microwave heating is used to rapidly synthesize SnO2 nanocrystals with tin tetrachloride and ammonium hydroxide as precursor for hydrolysis. The reaction time is much shortened and reaction temperature is much lower. These SnO2 nsnocrystals is dissolved into different solutions, such as ethanol and IPA, which is then spin coated on top of perovskite film as SnO2 film to be ETH to chose the best one , at last we find the best SnO2 layer to be solar call, efficiency increases to 11.7%, the fill factor increases to 0.75.

    摘要 I Extended Abstract II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XIV 第一張太陽能電池序論 1 1.1前言 1 1.2太陽能電池種類 1 1.2.1結晶矽太陽能電池 1 1.2.2薄膜太陽能電池 2 1.2.3有機太陽能電池 2 1.3太陽能電池的原理 3 1.4研究動機 4 第二章文獻回顧與材料選擇 6 2.1鈣鈦礦 6 2.2礦太陽能電池(Perovskite solar cell) 6 2.2.1 n-i-p型的鈦礦太陽能電池 7 2.2.2p-i-n型鈣鈦礦太陽能電池 9 2.3金屬氧化物 10 2.3.1二氧化錫的基本介紹 11 2.4微波法介紹 12 第三章實驗方法與流程 14 3.1實驗藥品 14 3.2實驗儀器 15 3.3實驗設計與流程 16 3.3.1藥品合成 16 3.3.1.1多孔氧化鎳(Mexo NiO) 16 3.3.1.2主動層前置溶液(Perovskite) 16 3.3.1.3碳六十衍生物([6,6]-pheny-C61 butyric acid methyl ester, PCBM) 16 3.3.1.4微波合成銦鋅氧化物(IZO) 16 3.3.2 鈣鈦礦太陽能電池的參數 19 3.4光學分析 20 3.4.1吸收光譜量測(Ultraviolet-visible spectroscopy, UV-Vis) 20 3.4.2動態光散射分析 21 3.4.3薄膜及粉末結構分析(X-ray diffraction,XRD) 22 3.4.4元素分析 23 3.4.5表面形貌分析 24 3.4.6光致發光分析 25 3.4.7IPCE量測 26 3.4.8四點探針(Four-Point Probe) 26 3.5太陽能電池的參數 27 3.5.1開路電壓(Open-circuit voltage) 27 3.5.2短路電流密度(Short-circuit current density) 27 3.5.3填充因子(Fill factor) 28 3.5.4轉換效率(Power conversion efficiency) 28 3.5.5損耗 28 3.5.5.1開路電壓的損耗 28 3.5.5.2短路電流的損耗 29 3.5.5.3填充係數的損耗 29 3.5.6I-V特性曲線量測 30 第四章實驗結果與討論 31 4.1微波合成 31 4.2微波合成前驅物、前驅物濃度與分散溶液的選擇 31 4.2.1合成前驅物對於合成二氧化錫的影響 31 4.2.2不同前驅物濃度對於合成二氧化錫的影響 34 4.2.3以不同溶液進行分散對於二氧化錫薄膜覆蓋的影響 37 4.3二氧化錫的微波合成參數影響 41 4.3.1微波合成瓦數的影響 41 4.3.2微波合成溫度的影響 43 4.3.3微波合成時間的影響 45 4.4最終的二氧化錫合成方式與分析 46 4.5二氧化錫薄膜的電性分析 48 4.6二氧化錫薄膜優化 49 4.6.1濃度對二氧化錫薄膜的影響 49 4.6.2轉速對二氧化錫薄膜的影響 54 4.6.3最終二氧化錫與PCBM製成元件比較圖 59 4.6.4電子層功函數的匹配 61 第五章結論 63 5.1結論 63 5.2未來展望 64 參考文獻 65

    [1]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power” Journal of Applied Physics, 25, 676-677(1954)
    [2]Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, Ewan D. Dunlop, ”Solar cell efficiency tables (Version 45), ” Progress in photovoltaics; research and applications, 23, 1–9(2015)
    [3]Jeffrey Peet, Michelle L. Senatore, Alan J. Heeger, Guillermo C. Bazan, ”The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells” Advanced Materials, 21, 1521(2009)
    [4]H. Tsubomura,M. Matsumura,Y. Nomura &T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell” Nature, 261, 402-403, (1976)
    [5]B O'regan, M Grätzel, “A low-cost, high-efficiency solarcell based on dye-sensitized” Nature, 353,737-740(1991)
    [6]蔡進譯 ”超高效率太陽電池-從愛因斯坦的光電效應談起” 物理雙月刊 27, 701-719(2005)
    [7]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, ”Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells” Journal of Applied Physics, 94, 6849-6854(2003)
    [8]Jingbi You, Lei Meng, Tze-Bin Song, Tzung-Fang Guo, Yang (Michael) Yang, Wei-Hsuan Chang, Ziruo Hong, Huajun Chen, Huanping Zhou, Qi Chen, Yongsheng Liu, Nicholas De Marco & Yang Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers” Nature Nanotechnology, vol 11,75-82(2016)
    [9]A. Sharma, D. Prakasha, K. D.Verma, ”Optical characterization of hydrothermally grown SnO2 nanocrystals” Journal of optoelectronics and advanced materials, Vol. 11, No. 3, 331 – 337(2009)
    [10]Nam-Gyu Park, ”Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell” The Journal of Physical Chemistry Letters, 4, 2423-2423(2013)
    [11]Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar, Tze Chien Sum, ”Long-Range Balanced Electron- and Hole- Transport Lengths in Organic-Inorganic CH3NH3PbI3” Science, vol 342, 344-348(2013)
    [12]Michael Grätzel, ”The light and shade of perovskite solar cells” Nature Materials, 13, 838-842(2014)
    [13]A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, ”Organometal halide perovskites as visible-light sensitizers for photovoltaic cells ” Journal of the American Chemical Society, 131, 6050-6051(2009)
    [14]J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, ”6.5% efficient perovskite quantum-dot-sensitized solar cell” Nanoscale, 3, 4088-4093(2011)
    [15]R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, ”Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%” Scientific Reports, 2, 591(2012)
    [16]H. S. Kim, C. R.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, ”Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites” Science, 338, 643-647(2012)
    [17]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells“ Nano Letters, 13, 1764-1769(2013)
    [18]J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells” Nature, 499, 316-319(2013)
    [19]M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition” Nature, 501, 395-398(2013)
    [20]D. Liu, T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques” Nature Photonics, 8, 133-138(2013)
    [21]H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells” Science, 345, 542-546(2014)
    [22]Woon Seok Yang, Jun Hong Noh, Nam Joong Jeon, Young Chan Kim, Seungchan Ryu, Jangwon Seo, Sang I Seok, ”High-performance photovoltaic perovskite layers fabricated through intramolecular exchange” Sciencexpress, 348(6240), 1234-1237(2015)
    [23]Jeffrey A. Christians, Raymond C. M. Fung and Prashant V. Kamat, ”An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide”ACS Publications, 136, 758−764(2014)
    [24]Peng Qin, Soichiro Tanaka, Seigo Ito, Nicolas Tetreault, Kyohei Manabe, Hitoshi Nishino, Mohammad Khaja Nazeeruddin & Michael Grätzel, ”Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency” Nature Communications, 5, 1-6(2014)
    [25]Z. Yuan, Z. Wu, S. Bai, Z. Xia, W. Xu, T. Song, H. Wu, L. Xu, J. Si, Y. Jin, B. Sun, “Hot-electron injection in a sandwiched TiOx-Au-TiOx structure for high-performance planar perovskite solar cells” Advanced Energy Materials, 5, 1500038 (2015)
    [26]J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, “Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells” Journal of Materials Chemistry A, 3, 10837-10844(2015)
    [27]J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, “Highly efficient planar perovskite solar cells through band alignment engineering” Energy & Environmental Science, 8, 2928-2934(2015)
    [28]Jun-Yuan Jeng, Yi-Fang Chiang, Mu-Huan Lee, Shin-Rung Peng, Tzung-Fang Guo, Peter Chen, Ten-Chin Wen, ”CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells” Advanced Materials, 25,3727-3732(2013)
    [29]Jun-Yuan Jeng, Kuo-Cheng Chen, Tsung-Yu Chiang, Tzung-Fang Guo, Peter Chen ”Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells” Advanced Materials, 26, 4107-4113(2014)
    [30]S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells” Energy & Environmental Science, 7, 399-407(2014)
    [31]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates” Nature Communications, 4, 2761(2013)
    [32]J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility” American Chemical Society Nanotechnology, 8, 1674-1680(2014)
    [33]Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process” Energy & Environmental Science, 7, 2359-2365(2014)
    [34]C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, “Planar heterojunction perovskite / PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process” Journal of Materials Chemistry A, 2, 15897-15903(2014)
    [35]J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, H. Lee, H. Kang, K. Lee, “Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer” Journal of Materials Chemistry A, 2, 17291-17296(2014)
    [36]H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, C. J. Brabec, “Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer” Chemistry of Materials, 26, 5190-5193(2014)
    [37]O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers” Nature Photonics, 8, 128-132(2013)
    [38]C Zuo, L Ding, ”Solution‐Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells” Small, 11(41), 5528-5532(2015)
    [39]Jingbi You, Lei Meng, Tze-Bin Song, Tzung-Fang Guo, Michael, Wei-Hsuan Chang, Ziruo Hong, Huajun Chen, Huanping Zhou, Qi Chen, Yongsheng Liu, Nicholas De Marco & Yang Yang, ”Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers” Nature Nanotechnology, 11, 75–81 (2016)
    [40]Zonglong Zhu, Yang Bai, Xiao Liu, Chu-Chen Chueh, Shihe Yang and Alex K.-Y. Jen, ”Enhanced Efficiency and Stability of Inverted Perovskite Solar Cell Using Highly Crtstalline SnO2 Nanocrystals as the Robust ElectronTransporting Layer”Advanced Materials, 28, 6478-6484(2016)
    [41]Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”Energy & Environmental Science, 7, 2619(2014)
    [42]J. Seo, S. Park, Y. Chan Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok, “Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells” Energy & Environmental Science, 7, 2642(2014)
    [43]J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells” Applied Physics Letters, 105, 183902(2014)
    [44]W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains” Science, 347, 522-525(2015)
    [45]J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, “Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency” Energy & Environmental Science, 8, 1602-1608(2015)
    [46]K Badeker - Ann. Phys ,”Electrical conductivity and thermo-electromotive force of some metallic compounds”(1907)
    [47]Ching-Kuei Shih, Peter Chen, ”Studies of Microwave-Assisted Synthesized Indium Zinc Oxide as Charge Extraction Layer for Perovskite Solar Cells”國立成功大學圖書館, U0026-2308201614475300(2016)
    [48]Chia-lu Hsiao, Peter Chen, ”Microwave-assisted Synthesis of SnO2 for Dye-sensitized solar cells” 國立成功大學圖書館, U0026-3007201322273400(2013)
    [49]Michael Saliba, Taisuke Matsui, Ji-Youn Seo, Konrad Domanski, Juan-Pablo Correa-Baena, Mohammad Khaja Nazeeruddin, Shaik M. Zakeeruddin, Wolfgang Tress, Antonio Abate, Anders Hagfeldt and Michael Grätzel, ”Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency” Royal Society of Chemistry, 9, 1989-1997(2016)
    [50]Mutalifu Abulikemu, Marios Neophytou, Jérémy M. Barbé, Max L. Tietze, Abdulrahman El Labban, Dalaver H. Anjum, Aram Amassian, Iain McCulloch and Silvano Del Gobbo, “Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells” Royal Society of Chemistry, 17, 7759-7763(2017)
    [51]Manda Xiao, Dr. Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Dr. Ye Zhu, Dr. Joanne Etheridge, Dr. Angus Gray-Weale, Dr. Udo Bach, Prof. Dr. Yi-Bing Cheng, Dr. Leone Spiccia, “A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells” Angewandte Chemie, 126, 1056-1061(2014)
    [52]Long Hu, Jun Peng, Weiwei Wang, Zhe Xia, Jianyu Yuan, Jialing Lu, Xiaodong Huang, Wanli Ma, Huaibing Song, Wei Chen, Yi-Bing Cheng and Jiang Tang, “Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells” ACS Photonics, 1, 547-553(2014)
    [53]Yakun Song, Songtao Lv, Xicheng Liu, Xianggao Li, Shirong Wang, Huiyun Wei, Dongmei Li, Yin Xiao and Qingbo Meng, “Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells” Royal Society of Chemistry, 50, 15239-15242(2014)
    [54]Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, “Interface engineering of highly efficient perovskite solar cells” Science, 345, 542-546(2014)
    [54]Zonglong Zhu, Xiaoli Zheng, Yang Bai, Teng Zhang, Zilong Wang, Shuang Xiao and Shihe Yang, “Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells” Royal Society of Chemistry, 17, 18265-18268
    (2015)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE