| 研究生: |
黃郁雯 Huang, Yu-Wen |
|---|---|
| 論文名稱: |
以不同數值模型模擬大氣邊界層流之比較 Inter-Comparison of Neutral Atmospheric Boundary Layer Flows Using Different Numerical Models |
| 指導教授: |
吳毓庭
Wu, Yu-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 計算流體力學 、大渦模擬 、大氣邊界層 、地表粗糙度 |
| 外文關鍵詞: | Numerical simulation, Computational fluid dynamics, Atmospheric boundary layer, Large-eddy simulation |
| 相關次數: | 點閱:129 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於綠色能源對風工程應用的需求越來越普遍,而風工程應用皆在大氣邊界層內,因此針對大氣邊界層的研究是必需的。本研究利用不同的數值模擬方式模擬大氣邊界層流流經均質地表,從而探討不同數值方法模擬出的結果和大氣邊界層理論進行比較。我們應用ANSYS FLUENT 商用軟體和In-house LES Framework並且選用大渦旋模擬(Large-Eddy Simulation)紊流模型來完成本次研究。
大渦旋模擬(LES)是一套很適用於大氣邊界層模擬的模型,其概念
是建立在「紊流的流動是由許多大小不同尺度的渦旋組成。大尺度的渦旋對平均流動影響較大,而小尺度的渦旋主要影響耗散項,通過耗散變動來影響各種變化。」LES的精確度僅取決於網格大小與Subgrid-scale model。它可以解析流場中大於網格的所有渦流,只有小於網格大小的渦流被參數化,並且,它可以預測紊流流體中的瞬時行為。
在FLUENT的模擬中我們使用兩種不同的壁面邊界條件: (1)無剪應力的靜止壁面和(2)使用者定義的特定剪應力條件,這兩種邊界條件會產生兩種不同的表面粗糙度,我們針對這兩種結果進行討論。在近地表區域,FLUENT的主流流向速度和速度變化量皆有低估的現象,但從速度頻譜圖上可以看出模擬結果在慣性次段(Inertial subrange)內的頻譜斜率接近-5/3,這和理論預測的斜率相當接近,因此此模擬結果是可信賴的。
在In-house LES Framework配合尺度依賴動態模型的模擬中,模擬結果顯示大部分的紊流特徵都和理論有相當高的一致性,因此這個模組在模擬大氣邊界層是非常適用的,也具有一定的準確性。
Due to increasing demands for wind energy applications, the investigations of wind data in atmospheric boundary layer have become essential. In this study, the flow data were computed from different numerical approaches. The approaches include the commercial package ANSYS Fluent and the pseudo-spectrum in-house code. The LES (Large-Eddy Simulation) turbulence closures were applied in our atmospheric boundary layer simulations.
LES is a powerful tool to simulate atmospheric turbulence. It contains the advantages that all of the components are solved in flow field but only the small scales require modeling. LES is available to predict instantaneous turbulent behavior in turbulent flows. In brief, the principle idea behind LES is to reduce computational cost and improve accuracy and authenticity in the turbulent flows.
There are two different wall boundary conditions used in the Fluent simulations: (a) stationary wall with no shear condition and (b) specified shear stresses based on Monin-Obukhov similarity theory, which carried out two different roughness lengths.
In the near-surface region, the streamwise velocity and velocity variance results obtained from the Fluent were underestimated, but the velocity spectra yielded a reliable agreement with theory. Compared to the results obtained from the Fluent, the in-house code based on the pseudo-spectrum method showed better agreement with the theory in all turbulence statistics.
1. World Energy Council. p. https://www.worldenergy.org/.
2. Porté-Agel, F., et al., Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 2011. 99(4): p. 154-168.
3. Abkar, M. and F. Porté-Agel, The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms. Energies, 2013. 6(5): p. 2338-2361.
4. Stull, R.B., An introduction to boundary layer meteorology. Vol. 13. 2012: Springer Science & Business Media.
5. Kuznetsov, S., et al., Flow and Turbulence Control in a Boundary Layer Wind Tunnel Using Passive Hardware Devices. Experimental Techniques, 2017. 41(6): p. 643-661.
6. Iyengar, A.K. and C. Farell, Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination. Journal of Wind Engineering and Industrial Aerodynamics, 2001. 89(11-12): p. 1059-1080.
7. Ho, Y.-K. and C.-H. Liu, Experimental study on flow and ventilation behaviours over idealised urban roughness. International Journal of Environment and Pollution 15, 2014. 54(2-4): p. 110-118.
8. Kunkel, G.J. and I. Marusic, Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. Journal of Fluid Mechanics, 2006. 548(-1).
9. De Angelis, V., P. Lombardi, and S. Banerjee, Direct numerical simulation of turbulent flow over a wavy wall. Physics of Fluids, 1997. 9(8): p. 2429-2442.
10. Eghdami, M., S. Bhushan, and A.P. Barros, Direct Numerical Simulations to Investigate Energy Transfer between Meso- and Synoptic Scales. Journal of the Atmospheric Sciences, 2018. 75(4): p. 1163-1171.
11. Bakker, A., Applied Computational Fluid Dynamics Lecture. 2002: p. http://www.bakker.org/dartmouth06/engs150/.
12. Blocken, B., T. Stathopoulos, and J. Carmeliet, CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 2007. 41(2): p. 238-252.
13. Balogh, M., A. Parente, and C. Benocci, RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: Implementation and comparison for fluent and OpenFOAM. Journal of Wind Engineering and Industrial Aerodynamics, 2012. 104-106: p. 360-368.
14. Fang, P., et al., Modeling the neutral atmospheric boundary layer based on the standard k-ε turbulent model: modified wall function. Wind Engineering, 2009.
15. Beneš, L., et al., MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF 3D ATMOSPHERIC BOUNDARY LAYER. 1998.
16. Langhans, W., J. Schmidli, and B. Szintai, A Smagorinsky-Lilly turbulence closure for COSMO-LES: Implementation and comparison to ARPS. COSMO newsletter, 2012. 12: p. 20-31.
17. Xue, M., K.K. Droegemeier, and V. Wong, The Advanced Regional Prediction System (ARPS)–A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorology and atmospheric physics, 2000. 75(3-4): p. 161-193.
18. Deardorff, J.W., Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 1972. 29(1): p. 91-115.
19. Moeng, C.-H., A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 1984. 41(13): p. 2052-2062.
20. Porté-Agel, F., C. Meneveau, and M.B. Parlange, A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. Journal of Fluid Mechanics, 2000. 415: p. 261-284.
21. Stoll, R. and F. Porté-agel, Effect of Roughness on Surface Boundary Conditions for Large-Eddy Simulation. Boundary-Layer Meteorology, 2006. 118(1): p. 169-187.
22. Stoll, R. and F. Porté‐Agel, Dynamic subgrid‐scale models for momentum and scalar fluxes in large‐eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resources Research, 2006. 42(1).
23. Bou-Zeid, E., C. Meneveau, and M. Parlange, A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Physics of fluids, 2005. 17(2): p. 025105.
24. Kleissl, J., et al., Numerical study of dynamic Smagorinsky models in large‐eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions. Water resources research, 2006. 42(6).
25. Horst, T., et al., HATS: Field observations to obtain spatially filtered turbulence fields from crosswind arrays of sonic anemometers in the atmospheric surface layer. Journal of the atmospheric sciences, 2004. 61(13): p. 1566-1581.
26. Chamecki, M., C. Meneveau, and M.B. Parlange, A Hybrid Spectral/Finite-Volume Algorithm for Large-Eddy Simulation of Scalars in the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2008. 128(3): p. 473-484.
27. Vasaturo, R., et al., Large eddy simulation of the neutral atmospheric boundary layer: performance evaluation of three inflow methods for terrains with different roughness. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 173: p. 241-261.
28. Bou‐Zeid, E., C. Meneveau, and M.B. Parlange, Large‐eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resources Research, 2004. 40(2).
29. Yang, X.I., et al., Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. Journal of Fluid Mechanics, 2016. 789: p. 127-165.
30. Cheng, W.-C. and F. Porté-Agel, Large-eddy simulation of flow and scalar dispersion in rural-to-urban transition regions. International Journal of Heat and Fluid Flow, 2016. 60: p. 47-60.
31. Petry, A.P., et al., Evaluation of Experimental Wind Tunnel, RANS and LES Analysis of Wind Flow Over a Complex Terrain. 2015.
32. Mentzoni, F., et al., Numerical modeling of turbulence above offshore helideck–Comparison of different turbulence models. Journal of Wind Engineering and Industrial Aerodynamics, 2015. 141: p. 49-68.
33. Mason, P.J. and D. Thomson, Large‐Eddy simulations of the neutral‐static‐stability planetary boundary layer. Quarterly Journal of the Royal Meteorological Society, 1987. 113(476): p. 413-443.
34. Porté-Agel, F., H. Lu, and Y.-T. Wu, Interaction between Large Wind Farms and the Atmospheric Boundary Layer. Procedia IUTAM, 2014. 10: p. 307-318.
35. Schumann, U., Subgrid-scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of computational physics, 1975. 18(4): p. 376-404.
36. Grötzbach, G., Direct numerical and large eddy simulation of turbulent channel flows. Encyclopedia of fluid mechanics, 1987. 6: p. 1337-1391.
37. Piomelli, U., et al., New approximate boundary conditions for large eddy simulations of wall‐bounded flows. Physics of Fluids A: Fluid Dynamics, 1989. 1(6): p. 1061-1068.
38. Piomelli, U. and E. Balaras, Wall-layer models for large-eddy simulations. Annual review of fluid mechanics, 2002. 34(1): p. 349-374.
39. Bechmann, A., et al., Hybrid RANS/LES Method for High Reynolds Numbers, Applied to Atmospheric Flow over Complex Terrain. Journal of Physics: Conference Series, 2007. 75.
40. Bechmann, A., N.N. Sørensen, and J. Johansen. Atmospheric flow over terrain using hybrid RANS/LES. in Proceedings of The European Wind Energy Conference and Exhibition (EWEC 2007), Milan, Italy. 2007.
41. Issa, R.I., Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of computational physics, 1986. 62(1): p. 40-65.
42. ANSYS, I. 12.9 Large Eddy Simulation (LES) Model Theory, User's Guide. 2009.
43. Germano, M., et al., A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 1991. 3(7): p. 1760-1765.
44. Lilly, D.K., A proposed modification of the Germano subgrid‐scale closure method. Physics of Fluids A: Fluid Dynamics, 1992. 4(3): p. 633-635.
45. Spalart, P.R. Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach. in Proceedings of First AFOSR International Conference on DNS/LES, 1997. 1997.
46. Gibson, M.M. and B.E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 2006. 86(03).
47. Launder, B.E., Second-moment closure: present… and future? International Journal of Heat and fluid flow, 1989. 10(4): p. 282-300.
48. Launder, B.E., G.J. Reece, and W. Rodi, Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics, 2006. 68(03).