| 研究生: |
楊長運 Yang, Chang-Yun |
|---|---|
| 論文名稱: |
孔隙材料降伏面演化的有限元分析 Finite element analysis on yield surface evolution of cellular materials |
| 指導教授: |
劉立偉
Liu, Li-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 孔隙材料 、蜂巢 、填充材 、小梁骨 、有限元素法 、降伏面 、接續降伏面 、降伏後行為 |
| 外文關鍵詞: | Cellular material, Honeycomb, Inclusions, Trabecular bone, Finite element method, Yield surface, Subsequent yield surface, Post yield behaviour |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在塑性力學相關研究的降伏面為彈性區域的邊界,因此降伏面的面積大小與形狀可視 為材料性能與其在應力空間中所能承受的狀態,而降伏面用由無數個降伏點構成。本研究 運用有限元分析研究了 2 維孔隙材料-六角形蜂巢材料的降伏點和降伏面。根據金屬實驗 中決定降伏點的方式,使用有限元分析模擬單軸拉伸試驗,得出蜂巢材料的等效塑性應變, 從而選擇在模擬上合適的蜂巢降伏點決定方式。本研究擴展了一維應力空間降伏點的決定 方式,以探測蜂巢材料在軸向剪切應力空間中的降伏面。考慮有限尺寸和不同長寬比的蜂 巢來探測初始降伏面,降低邊界效應。應用四種不同位移的預加載路徑後,探測蜂巢材料 的接續降伏面,觀察降伏面的演化。在本研究中發現,相對密度對於蜂巢材料的降伏面演 化行為有著顯著的相關性。由於在模擬上必須選定代表區塊尺寸,而結果顯示代表區塊尺 寸對於蜂巢材料所能承受的預加載量在降伏面演化的行為上有差異性。本研究不僅確立了 觀察六角形蜂巢材料的降伏面演化應用,也將此方法擴展至研究更多形式的孔隙材料,如 Voronoi 蜂巢、帶有填充材的孔隙材料與小梁骨。藉由分析具有擾動幾何的 Voronoi 蜂巢 在相同預加載狀態下的降伏面演化行為,進一步延伸至討論使用 Voronoi 蜂巢進行建模的 小梁骨仿生孔隙材料。建立不同擾動狀態的 Voronoi 蜂巢並分別設定不同的等向性與異向 性材料觀察孔隙材料幾何與材料對小梁骨降伏面演化結果的影響。觀察 Voronoi 蜂巢的結 果可發現孔隙形狀的不規則擾動對於孔隙材料的降伏面行為影響較不顯著,而對於孔隙的 鬆弛擾動狀態較為顯著,並且小梁骨的降伏面演化結果表明孔隙材料的降伏面行為與幾何 和材料模型有關。為了強化孔隙材料藉由分別填充軟硬材在孔隙材料中,結果表明填充材 能有效的強化孔隙材料剛性及改變降伏面演化行為。
The yield surface is an elastic region boundary in the theory of plasticity, wherefore the area size and shape of the yield surface can represent the capability of honeycomb materials in stress space. The yield point and the yield surface of one kind of 2 D cellular materials, hexagonal honeycombs is investigated in this study via the finite element analysis. According to determinations of yield point for metals in the experi- ment, a finite element analysis is conducted to simulate the uniaxial tension test and show the equivalent plastic strain of the honeycomb materials, then the proper deter- mination of yield point for the honeycombs is selected. The present study extends the selected determination of yield point in 1D stress space into yield surface detection of honeycombs in the axial-shear stress space. Honeycombs with finite size and different length-to-width ratio of the cell wall are considered to detect the initial yield surface with the reduction of the boundary effect. After the four different preloading paths of displacement were applied, the subsequent yield surfaces of honeycombs were detected and the evolution of yield surface was observed. The simulation shows a significant correlation between the relative density with the yield surface evolution of the hon- eycomb materials. The representative-block size must be selected in simulation, and results show that representative-block size has a significant relation to the yield surface evolution of cellular materials. This study not only establishes the application of this method in observing the yield surface evolution of hexagonal honeycomb materials but also extends this method to study more cellular materials, such as Voronoi honeycombs, cellular material with inclusions, and trabecular bone. By analyzing the yield surface evolution of the Voronoi honeycombs in the same preloading paths, we investigated the yield surface evolution of the trabecular bone. Voronoi honeycombs with different perturbed types were established and different isotropic and anisotropic materials were assigned to simulate trabecular bone. The results of Voronoi honeycombs show that the perturbed type of cellular shape has a less significant effect on the behavior of the shape of yield surfaces while the perturbed type of the cellular relaxation is more significant, and the results of the yield surface evolution of the trabecular bone also show that the influence of cellular shape is less significant. The material model assigns to trabecular bone has a significant influence on yield surface evolution. To reinforce the cellular materials, the soft and stiff inclusions were assigned to cellular materials as cellular composites. The observation results show that the inclusions can effectively strengthen the stiffness and change the yield surface evolution.
[1] F. Abd El-Sayed, R. Jones, and I. Burgess. A theoretical approach to the deformation of honeycomb based composite materials. Composites, 10(4):209–214, 1979.
[2] M. Alkhader and M. Vural. Mechanical response of cellular solids: Role of cellular topology and microstructural irregularity. International Journal of Engineering Science, 46(10):1035–1051, oct 2008.
[3] M. Alkhader and M. Vural. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial fe simulations. Journal of the Mechanics and Physics of Solids, 57(5):871–890, 2009.
[4] M. Alkhader and M. Vural. A plasticity model for pressure-dependent anisotropic cellular solids. International Journal of Plasticity, 26(11):1591–1605, 2010.
[5] H. H. Bayraktar, A. Gupta, R. Y. Kwon, P. Papadopoulos, and T. M. Keaveny. The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone. Journal of Biomechanical Engineering, 126(6):677–684, 02 2005.
[6] H. H. Bayraktar and T. M. Keaveny. Mechanisms of uniformity of yield strains for trabecular bone. Journal of Biomechanics, 37(11):1671–1678, 2004.
[7] A. Catapano and M. Montemurro. A multi-scale approach for the optimum design of sandwich plates with honeycomb core. part i: homogenisation of core properties. Composite Structures, 118:664–676, 2014.
[8] C. Chen, T. Lu, and N. Fleck. Effect of imperfections on the yielding of two- dimensional foams. Journal of the Mechanics and Physics of Solids, 47(11):2235– 2272, 1999.
[9] P.-Y. Chen, A. Stokes, and J. McKittrick. Comparison of the structure and mechanical properties of bovine femur bone and antler of the north american elk (cervus elaphus canadensis). Acta Biomaterialia, 5(2):693–706, 2009.
[10] M. C. Fernandes, J. Aizenberg, J. C. Weaver, and K. Bertoldi. Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 20(2):237–241, 2021.
[11] L. Gibson, M. Ashby, J. Zhang, and T. Triantafillou. Failure surfaces for cellular materials under multiaxial loads—i.modelling. International Journal of Mechanical Sciences, 31(9):635–663, 1989.
[12] L. J. Gibson, M. F. Ashby, G. S. Schajer, and C. I. Robertson. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782):25–42, 1982.
[13] L. J. Gibson, K. E. Easterling, and M. F. Ashby. The structure and mechanics of cork. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 377(1769):99–117, 1981.
[14] M. Grediac. A finite element study of the transverse shear in honeycomb cores. International Journal of Solids and Structures, 30(13):1777–1788, 1993.
[15] J. Hohe and W. Becker. A refined analysis of the effective elasticity tensor for general cellular sandwich cores. International Journal of Solids and Structures, 38(21):3689–3717, 2001.
[16] H.-K. Hong, L.-W. Liu, Y.-P. Shiao, and S.-F. Yan. Yield surface evolution and elastoplastic model with cubic distortional yield surface. Journal of Engineering Mechanics, 148(6):04022027, 2022.
[17] R. Hutchinson and N. Fleck. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids, 54(4):756–782, 2006.
[18] J. Klintworth and W. Stronge. Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. International Journal of Mechanical Sciences, 30(3):273–292, 1988.
[19] X. Li, Z. Lu, Z. Yang, Q. Wang, and Y. Zhang. Yield surfaces of periodic honeycombs with tunable Poisson's ratio. International Journal of Mechanical Sciences, 141:290–302, 2018.
[20] H. C. Luo, X. Ren, Y. Zhang, X. Y. Zhang, X. G. Zhang, C. Luo, X. Cheng, and Y. M. Xie. Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression. Composite Structures, 280:114922, 2022.
[21] S. Malek and L. Gibson. Effective elastic properties of periodic hexagonal honeycombs. Mechanics of Materials, 91:226–240, 2015.
[22] I. Masters and K. Evans. Models for the elastic deformation of honeycombs. Composite Structures, 35(4):403–422, 1996.
[23] M. J. Michno and W. N. Findley. An historical perspective of yield surface inves- tigations for metals. International Journal of Non-Linear Mechanics, 11(1):59–82, 1976.
[24] R. E. Miller. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences, 42(4):729–754, 2000.
[25] E. F. Morgan and T. M. Keaveny. Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5):569–577, 2001.
[26] H. Rhee, M. Horstemeyer, Y. Hwang, H. Lim, H. El Kadiri, and W. Trim. A study on the structure and mechanical behavior of the terrapene carolina carapace: A pathway to design bio-inspired synthetic composites. Materials Science and Engineering: C, 29(8):2333–2339, 2009.
[27] A. Sanyal, A. Gupta, H. H. Bayraktar, R. Y. Kwon, and T. M. Keaveny. Shear strength behavior of human trabecular bone. Journal of Biomechanics, 45(15):2513–2519, 2012.
[28] M. Silva and L. Gibson. Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone, 21(2):191–199, 1997.
[29] M. J. Silva, W. C. Hayes, and L. J. Gibson. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. International Journal of Mechanical Sciences, 37(11):1161–1177, 1995.
[30] A. Simone and L. Gibson. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia, 46(6):2139–2150, 1998.
[31] S.-J. Sung, L.-W. Liu, H.-K. Hong, and H.-C. Wu. Evolution of yield surface in the 2D and 3D stress spaces. International Journal of Solids and Structures, 48(6):1054 – 1069, 2011.
[32] N. Triantafyllidis and M. Schraad. Onset of failure in aluminum honeycombs under general in-plane loading. Journal of the Mechanics and Physics of Solids, 46(6):1089–1124, 1998.
[33] A.-J. Wang and D. McDowell. Yield surfaces of various periodic metal honeycombs at intermediate relative density. International Journal of Plasticity, 21(2):285–320, 2005.
[34] A.-J. Wang and D. L. McDowell. In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs. Journal of Engineering Materials and Technology, 126(2):137–156, 03 2004.
[35] W. Warren and A. Kraynik. Foam mechanics: the linear elastic response of two- dimensional spatially periodic cellular materials. Mechanics of Materials, 6(1):27– 37, 1987.
[36] L. Xie and K. Chan. The effect of strut geometry on the yielding behaviour of open-cell foams. International Journal of Mechanical Sciences, 48(3):249–255, 2006.
[37] Q. Zhang, X. Yang, P. Li, G. Huang, S. Feng, C. Shen, B. Han, X. Zhang, F. Jin, F. Xu, and T. J. Lu. Bioinspired engineering of honeycomb structure –using nature to inspire human innovation. Progress in Materials Science, 74:332–400, 2015.
[38] Z. Zhang, Y.-W. Zhang, and H. Gao. On optimal hierarchy of load-bearing biological materials. Proceedings of the Royal Society B: Biological Sciences, 278(1705):519–525, 2011.
[39] H. Zhu, J. Hobdell, and A. Windle. Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids, 49(4):857–870, 2001.
[40] H. Zhu, S. Thorpe, and A. Windle. The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures, 43(5):1061–1078, 2006.
校內:2027-07-19公開