簡易檢索 / 詳目顯示

研究生: 廖柏翰
Liao, Bo-Han
論文名稱: 採用動態電壓恢復器結合超級電容器於配電系統電力品質之改善
Improvement of Electric Power Quality in Distribution Systems Using a Dynamic Voltage Restorer Integrated with a Supercapacitor
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 153
中文關鍵詞: 動態電壓恢復器超級電容器配電系統電力品質電壓不平衡再生能源發電系統
外文關鍵詞: Dynamic voltage restorer, supercapacitor, distribution systems, power quality, voltage unbalance, renewable-energy power-generation systems
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出採用動態電壓恢復器結合超級電容器應用於配電系統中,以改善電壓驟降、驟昇、電力諧波和三相電壓不平衡等不良的電力品質。本論文之架構一研究了市電端發生不良電力品質時,動態電壓恢復器結合超級電容之補償效果;架構二以IEEE四節點饋線系統為基礎,透過改變配電變壓器繞組為U-V/V-V連接、改變傳輸線R/X比例與負載大小來分析電壓不平衡,並與配電型靜態同步補償器之效能比較;架構三以實際台電配電系統為基礎,使用動態電壓恢復器結合超級電容器改善系統電壓不平衡,並探討對系統之再生能源發電系統之改善影響。由本論文三個架構之模擬結果,驗證所提出動態電壓恢復器結合超級電容器於改善配電系統電力品質的可行性。

    This thesis proposes a dynamic voltage restorer integrated with a supercapacitor (DVR-SC) to improve the power quality such as voltage sag, swell, harmonics, and three-phase voltage unbalance in distribution systems. The grid’s power quality problem of system configuration 1 can be compensated by the proposed DVR-SC. The DVR-SC and a distributed static synchronous compensator (D-STATCOM) are applied to system configuration 2 based on the IEEE four-node feeder system to mitigate voltage unbalance due to the change of distribution transformer’s U-V/V-V winding connections, transmission line ratio of X/R, and load magnitude. System configuration 3 based on the distribution system of Taiwan Power Company is used to study three-phase voltage unbalance and discuss the improvement of voltage unbalance on the renewable-energy power-generation systems using the proposed DVR-SC. The simulation results of the three system configurations show that the proposed DVR-SC can be used to effectively improve the power quality of the studied distribution systems.

    摘要 I SUMMARY II 目錄 VII 圖目錄 XIV 表目錄 XX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 2 1-3 本論文之貢獻 10 1-4 研究內容概述 12 第二章 電力品質之探討 14 2-1 前言 14 2-2 電壓驟降 15 2-2-1 電壓驟降成因以及影響 15 2-2-2 電壓驟降與驟昇定義以及管制標準 18 2-3 電力諧波 19 2-3-1 電力諧波成因以及影響 19 2-3-2 電力諧波定義以及管制標準 21 2-4三相電壓不平衡 23 2-4-1三相電壓不平衡之成因以及影響 23 2-4-2 三相電壓不平衡之定義以及管制標準 27 2-5 電壓閃爍 30 第三章 系統架構與數學模型 31 3-1 前言 31 3-2 系統架構 32 3-3 變壓器之模型 37 3-3-1 三台單相變壓器Y-Δ連接之模型 37 3-3-2 三台單相變壓器Δ-Δ連接之模型 38 3-3-3 二台單相變壓器U-V連接之模型 39 3-3-4 二台單相變壓器V-V連接之模型 40 3-4 鼠籠式轉子感應電機之模型 41 3-5 太陽能陣列之模型 44 3-6風渦輪機之模型 49 3-7旋角控制系統之模型 53 3-8 微渦輪機之模型 55 3-8-1 壓縮機之模型 56 3-8-2 燃燒室之模型 57 3-8-3 渦輪機之模型 57 3-9永磁式同步發電機之模型 58 3-10 柴油引擎發電機之模型 60 3-10-1柴油引擎之模型 60 3-10-2同步發電機之模型 62 3-10-3激磁系統之模型 64 3-11 儲能系統之模型 65 第四章 動態電壓恢復器結合超級電容器之設計與應用 67 4-1 前言 67 4-2動態電壓恢復器之補償原理與架構 67 4-2-1 動態電壓恢復器之補償原理 67 4-2-2 動態電壓恢復器之架構與控制方法 69 4-3超級電容器之探討與應用 71 4-4動態電壓恢復器與超級電容器之參數設計 77 第五章 系統模擬分析 80 5-1 前言 80 5-2 研究系統架構一採用DVR-SC對電力品質之影響分析 81 5-2-1研究系統架構一案例一:市電端發生三相電壓驟降、驟昇和諧波之電力品質分析 81 5-2-2研究系統架構一案例二:市電端發生a相電壓驟降和驟昇之電力品質分析 86 5-2-3研究系統架構一案例三:市電端發生長期三相電壓驟降之DVR與DVR-SC的比較 90 5-3研究系統架構二之三相電壓不平衡分析 93 5-3-1研究系統架構二案例一:配電變壓器Tr2繞組為Y-Δ連接之三相電壓不平衡分析 93 5-3-2研究系統架構二案例二:配電變壓器Tr2繞組為U-V連接之三相電壓不平衡分析 100 5-3-3研究系統架構二案例三:主變壓器Tr1與配電變壓器Tr2繞組皆為U-V連接之負載變動三相電壓不平衡分析 107 5-3-4案例四:改變系統傳輸線R/X比例與不平衡負載大小之三相電壓不平衡分析 111 5-3-5 研究系統架構二案例五:DVR-SC與D-STATCOM模擬結果比較 123 5-4研究系統架構三之三相電壓不平衡分析 128 第六章 結論與未來研究方向 137 6-1 結論 137 6-2未來研究方向 140 參考文獻 142 附錄:系統參數 148

    [1]張家豪,一種動態電壓恢復器之研製,國立中山大學電機工程學系碩士論文,民國九十三年七月。
    [2]Z.-X. Zheng, X.-Y. Xiao, X.-Y. Chen, C.-J. Huang, L.-H. Zhao, and C.-S. Li, “Performance evaluation of a MW-class SMES-BES DVR system for mitigation of voltage quality disturbances,” IEEE Trans. Industry Applications, vol. 54, no. 4, pp. 3090-3099, Jul./Aug. 2018.
    [3]P. T. Ogunboyo, R. Tiako, and I. E. Davidson, “An improvement of voltage unbalance in a low voltage 11/0.4 kV electric power distribution network under 3-phase unbalance load condition using dynamic voltage restorer,” in Proc. 2017 IEEE PES PowerAfrica, Accra, Ghana, Jun. 27-30, 2017, pp. 126-131.
    [4]P. T. Ogunboyo, R. Tiako, and I. E. Davidson, “Effectiveness of dynamic voltage restorer for unbalance voltage mitigation and voltage profile improvement in secondary distribution system,” Canadian Journal of Electrical and Computer Engineering, vol. 41, no. 2, pp. 105-115, Sep. 2018.
    [5]H. Ezoji, A. Sheikholeslami, M. Tabasi, and M. M. Saeednia, “Simulation of dynamic voltage restorer using hysteresis voltage control,” European Journal of Scientific Research, vol. 27, no. 1, pp. 152-166, Jan. 2009.
    [6]P. Kanjiya, B. Singh, A. Chandra, and K. A.-Haddad, “SRF theory revisited to control self-supported dynamic voltage restorer (DVR) for unbalanced and nonlinear loads,” IEEE Trans. Industry Applications, vol. 49, no. 5, pp. 2330-2340, Sep./Oct. 2013.
    [7]T.-H. Chen, J.-D. Chang, and Y.-L. Chang, “Models of grounded mid-tap open-wye and open-delta connected transformers for rigorous analysis of a distribution system,” IEE Proc. Generation, Transmission, and Distribution, vol. 143, no. 1, pp. 82-88, Jan. 1996.
    [8]M. B. A. Basith and K. Sunitha, “A novel approach of dynamic voltage restorer integration with ultra capacitor for proper voltage sag compensation,” in Proc. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, Sep. 21-22, 2017, pp. 578-582.
    [9]S. Venugopal and V. Agarwal, “A novel control strategy for an ultra-capacitor based dynamic voltage restorer with controllable dc-link voltage,” in Proc. 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, Jun. 22-25, 2015.
    [10]D. Somayajula and M. L. Crow, “An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 616-624, Apr. 2015.
    [11]H. Hafezi and R. Faranda, “Dynamic voltage conditioner: A new concept for smart low-voltage distribution systems,” IEEE Trans. Power Electronics, vol. 33, no. 9, pp. 7582-7590, Sep. 2018.
    [12]S. K. Singh and S. K. Srivastava, “Enhancement in power quality using dynamic voltage restorer (DVR) in distribution network,” in Proc. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, Mar. 17-18, 2017.
    [13]A. K. Sadigh, V. Dargahi, and K. Corzine, “New configuration of dynamic voltage restorer for medium voltage application,” in Proc. 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, Mar. 20-24, 2016, pp. 2187-2193.
    [14]P. Jayaprakash, B. Singh, D. P. Kothari, A. Chandra, and K. A.-Haddad, “Control of reduced rating dynamic voltage restorer with battery energy storage system,” in Proc. 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, New Delhi, India, Oct. 12-15, 2008, pp. 1295-1303.
    [15]Z. Zheng, X. Xiao, C. Huang, and C. Li, “Enhancing transient voltage quality in a distribution power system with SMES-based DVR and SFCL,” IEEE Trans. Applied Superconductivity, vol. 29, no. 2, Mar. 2019.
    [16]陳正一、李家璽、吳孟倫,「不同補償策略應用於動態電壓調整器對於電力品質改善之效能評估」,中華民國第三十九屆電力工程研討會,國立中央大學,桃園市,台灣,2018年12月15-16日。
    [17]N. H. Woodley, “Field experience with dynamic voltage restorer systems,” in Proc. 2000 IEEE Power Engineering Society Winter Meeting, Singapore, Singapore, Jan. 23-27, 2000, pp. 2864-2871.
    [18]王佑新,分散式電源串聯型併聯模組硬體實現研究,國立中山大學電機工程學系碩士論文,民國九十七年七月。
    [19]吳勝隆,串聯型動態電壓調整器之研究,國立台灣大學電機工程學系碩士論文,民國九十三年六月。
    [20]A. K. Sadigh and K. M. Smedley, “Review of voltage compensation methods in dynamic voltage restorer (DVR),” in Proc. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, Jul. 22-26, 2012, pp. 2115-2122.
    [21]C. Meyer, R. W. D. Doncker, Y. W. Li, and F. Blaabjerg, “Optimized control strategy for a medium-voltage DVR—theoretical investigations and experimental results,” IEEE Trans. Power Electronics, vol. 23, no. 6, pp. 2746-2754, Nov. 2008.
    [22]江榮城,電力品質實務(一),台北市:全華科技圖書公司,民國八十九年五月。
    [23]王耀諄,電力品質,第二版,台北市:高立圖書公司,民國九十八年八月。
    [24]劉威盛,配電型靜態同步補償器應用於變壓器U-V/V-V連接之電壓不平衡改善,國立成功大學電機工程學系碩士論文,民國一百零五年七月。
    [25]盧修宇,採用多階靜態同步補償器於配電系統電壓不平衡改善之分析,國立成功大學電機工程學系碩士論文,民國一百零六年七月。
    [26]P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 3rd ed., New York: John Wiley & Sons, 2013.
    [27]Implement PV array modules, [Online]. Available: http://www.mathworks.com/help/physmod/sps/ powersys/ref/pvarray.html, retrieved date: Mar. 2, 2020.
    [28]U. S. Patel, M. D. Sahu, and D. Tirkey, “Maximum power point tracking using perturb & observe algorithm and compare with another algorithm,” International Journal of Digital Application & Contemporary Research (IJDACR), vol. 2, no. 2, pp. 1-8, Sep. 2013.
    [29]S. J. Chapman, Electric Machinery Fundamentals, 4th ed., New York: McGraw-Hill, 2004.
    [30]S. Heier, Grid Integration of Wind Energy Conversion Systems, New York: John Wiley & Sons, 1998.
    [31]吳登耀,多階串級H橋式靜態同步補償器應用於配電系統之三相電壓不平衡改善,國立成功大學電機工程學系碩士論文,民國一百零七年七月。
    [32]L. Wang and G.-Z. Zheng, “Analysis of a microturbine generator system connected to a distribution system through power-electronics converters,” IEEE Trans. Sustainable Energy, vol. 2, no. 2, pp. 159-166, Apr. 2011.
    [33]M.-J. Chen, Y.-C. Wu, and G.-T Liu, “Dynamic behavior a distributed incinerator power system under output power variation,” International Journal of Numerical Modelling Electronic Networks, Devices Fields, vol. 28, no. 1, pp. 65-77, Jan./Feb. 2015.
    [34]O. Tremblay and L.-A. Dessaint, “Experimental validation of a battery dynamic model for EV applications,” World Electric Journal, vol. 3, no. 1, pp. 289-298, May 2009.
    [35]T. Trapp, C. C. Chryssostomidis, and G. Karniadakis, “A design for the interface between a battery storage and charging unit and a medium voltage DC bus, as part of an integrated propulsion system in the all electric ship,” Grand Challenges in Modeling and Simulation (GCMS), Hague, Netherlands, Jun. 27-30, 2011, pp. 6-11.
    [36]L. Pan, J. Gu, J. Zhu, and T. Qiu, “Integrated control of smoothing power fluctuations and peak shaving in wind/PV/energy storage system,” in Proc. 2016 International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, Aug. 27-28, 2016, pp. 586-591.
    [37]Implement generic supercapacitor model, [Online]. Available: https://ww2.mathworks.cn/help/physmod/sps/ powersys/ref/supercapacitor.html, retrieved date: Mar. 2, 2020.
    [38]T. A. Naidu, S. R. Arya, and R. Maurya, “Multiobjective dynamic voltage restorer with modified EPLL control and optimized PI-controller gains,” IEEE Trans. Power Electronics, vol. 34, no. 3, pp. 218 -2192, May 2018.
    [39]A. Kazemi and A. Azhdast, “Implementation of a control strategy for dynamic voltage restorer (DVR) and dynamic voltage compensator (DVC),” in Proc. 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, Mar. 15-18, 2009, pp. 1-6.

    無法下載圖示 校內:2025-07-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE