簡易檢索 / 詳目顯示

研究生: 陳奕志
Chen, Yi-chih
論文名稱: 有機p-n接面太陽能電池效率的改善
Improved Efficiency of p-n Junction Organic Photovoltaic Cell
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 79
中文關鍵詞: 有機材料太陽能電池
外文關鍵詞: organic material, photovoltaic cell
相關次數: 點閱:55下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於此篇論文中,我們使用共蒸鍍的方法應用於高電子遷移率的有機材料 Pentacene以及p-type的有機材料CuPc去製作成我們期待的高效率的太陽能電池(OPV cell)。在製作的同時我們也使用在高吸收效率的材料DCJTB加入在元件之中,使元件的吸收效率增加,進而增加其短路電流而達到提升效率的目的。
    首先我們嘗試最佳化p-n有機太陽能電池的結構,其結構依序如下ITO/CuPc(Xnm)/C60(Ynm)/BCP(10nm)/Al(150nm)/LiF(80nm)。我們先調變p-type層CuPc的膜厚達到我們期待的高效率;之後再改變n-type層C60的膜厚在以達到此標準結構的最高效率,此元件的短路電流可達4.87mA/cm2,開路電壓為0.44伏,填充因數為51.2%,效率為1.09%。
    接著我們選擇了最佳化的標準p-n接面太陽能電池的結構並在p-type層CuPc用共蒸鍍的方式參雜高電子遷移率的有機材料 Pentacene,藉由增加Pentacene的濃度我們可以發現元件的短路電流以及效率改變。其結構依序如下ITO/(S%)Pentacene:CuPc(25nm)/C60(50nm)/BCP(10nm)/Al(150nm)/LiF(80nm)。我們調變了在4%的參雜濃度下得到較高的短路電流以及效率;此元件的短路電流可達6.52mA/cm2,開路電壓為0.44伏,填充因數為48.3%,效率為1.39%。
    最後我們在p-type層與n-type層中增加高吸收效率的DCJTB,藉由增加DCTTB的厚度我們可以改善短路電流以及效率。其結構依序如下ITO/(4%)Pentacene:CuPc(25nm)/DCJTB(Lnm)/C60(50nm)/BCP(10nm)/Al(150nm)/LiF(80nm)。我們調變了在0.5nm的參雜濃度下得到較高的短路電流以及效率;此元件的短路電流可達6.80mA/cm2,開路電壓為0.44伏,填充因數為49.0%,效率為1.47%。

    In this thesis, we use the co-vaporizing skills in high mobility organic material pentacene and p-type organic material CuPc to achieve high efficiency organic photovoltaic cell (OPV cell). We also use high absorption material DCJTB into OPV cell to enhance the short-circuit current (JSC) and the efficiency.
    At first, we try to optimize the best standard p-n junction organic photovoltaic cell structure whose layer in order as ITO/CuPc(Xnm)/C60(Ynm)/BCP(10nm)/ Al(150nm)/LiF(80nm), and modulate the depth of CuPc (p-type) layer X to obtain the highest efficiency, then modulate the depth of C60 (n-type) layer Y to obtain the highest efficiency of this standard device, which are 4.87 mA/cm2 of short-circuit current, 0.44 V of open-circuit voltage, 51.2% of fill factor, and 1.09% of efficiency.
    Second, we choose the optimal standard structure to dope pentacene in p-type layer to enhance the mobility of CuPc. By the increasing of concentration on pentacene, we also find the decline of the short-circuit current and efficiency. This structure whose layer in order as ITO/(S%)Pentacene:CuPc(25nm)/C60(50nm)/ BCP(10nm)/Al(150nm)/LiF(80nm). We tune concentration of Pentacene around 4% in CuPc to acquire 6.52 mA/cm2 of short-circuit current, 0.44 V of open-circuit voltage, 48.3% of fill factor, and 1.39% of efficiency.
    Finally, we add high absorption material DCJTB between n-type and p-type layer to enhance absorption of this device. By the increasing of thickness on DCJTB, we also find the increase of the short-circuit current and efficiency. This structure whose layer in order as ITO/(S%)Pentacene:CuPc(25nm)/DCJTB(Lnm)/C60(50nm)/ BCP(10nm)/Al(150nm)/LiF(80nm). We tune thickness of DCJTB around 0.5nm to acquire 6.80 mA/cm2 of short-circuit current, 0.44 V of open-circuit voltage, 49.0% of fill factor, and 1.47% of efficiency.

    Abstract (Chinese) Abstract (English) Acknowledgement (Chinese) Table Captions Figure Captions Chapter 1 Introduction 1 Chapter 2 Organic p-n Junction Photovoltaic Cell 3 2-1 The photovoltaic theorems 3 2-2 Mechanism of producing power by p-n junction 4 2-3 Measurements of photovoltaic cells 7 2-4 Materials of anode and cathode 8 2-5 Design of organic photovoltaic device 9 2-6 P-n junction organic photovoltaic cell 9 Chapter 3 Fabrication of Organic p-n Junction Photovoltaic Cell 11 Device Fabrication Process 11 3-1 Pre-clean ITO Glass 11 3-2 ITO Pattern Etching 11 3-3 UV Ozone Treatment 12 3-4 Thermal organic vaporizing 14 Chapter 4 Experimental Results 15 4-1 Capping layer 15 4-2 Device Structure 16 4-3 Modulate CuPc Depth (X nm) 18 4-4 Modulate C60 Depth (Y nm) (X=25nm) 19 4-5 Modulate Concentration of DCJTB in CuPc Layer (X=25nm, Y=50nm) 20 4-6 Modulate Concentration of pentacene in CuPc Layer (X=25nm, Y=50nm) 21 4-7 Modulate Thickness of DCJTB in CuPc Layer (X=25nm, Y=50nm, S=5%) 22 Chapter 5 Conclusion 24 Reference

    [1] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latre’che, G. Czeremuszkin and M. R. Wertheimer, Thin Solid Films, 511-512 (2006) 349.
    [2] F. A. Castro, A. Faes, T. Geiger, Carlos F. O. Graeff, M. Nagel, F. Nuesch and R. Hany, Synth. Met. 156 (2006) 973.
    [3] M.Pope, H. Kallmann, P. Magnante, J. Chem. Phys.,38, 2024 (1963).
    [4] W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14, 299 (1965).
    [5] W. D. Gill, J. Appl. Phys., 43, 5033, (1972).
    [6] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym. 50, 105 (1999).
    [7] C. W. Tang, Appl. Phys. Lett. 48 (1986) 183.
    [8] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. 84, 16, (2004).
    [9] Y. Terao, H. Sasabe, C. Adachia, Appl. Phys. 90, (2007).
    [10] O. V. Molodtsova, I. Schwieger, M. Knupter, Appl. Surt. Sci. 252 (2005) 143.
    [11] M. L. Wang, Q. L. Song, H. R. Wu, B. F. Ding, X. D. Gao, X. Y. Sun, X. M. Ding, and X. Y. Hou, Org. Electron. 8 (2007) 445.
    [12] B. P. Rand, J. Xue, S. Uchida, and S.R. Forrest, J. Appl. Phys. 98 (2005) 124902.
    [13] J. Xue, B. P. Rand, S. Uchida, and S.R. Forrest, J. Appl. Phys. 98 (2005) 124903.
    [14] J. Xue, B. P. Rand, S. Uchida, and S.R. Forrest, Adv. Mater. 17 (2005) 66.
    [15] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Applied Physics Lett., 61, 761 (1992).
    [16] J. Cui, A. Wang, N. L. Edleman, J. Ni, P.Lee, N. R. Armstrong, T. J. Marks, Adv. Master., 13, 1476 (2001).
    [17] F. O. Adurodija, H. Izumi, T. Ishihar, Thin Solid Films, 350, 79, (1999).
    [18] H. J. Kim, J. W. Bae, J. S. Kim, Surf. Cont. Technol., 131, 201 (2000).

    [19] J. Matsuo, H. Katsumata, E. Minami, Nucl. Instrum. Methods Phys. Res. B, 161, 952 (2000).
    [20] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence, 87 1165 (2000).
    [21] J. S. Kim, M. Granstrm, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
    [22] S. K. So1, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys A., 68, 447 (1999).
    [23] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M Wang, J. Appl. Phys., 86, 1688 (1999).
    [24] M. Y. Chen, S. L. Lai, K. M. Lau, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 89 (2006) 163515.
    [25] Q. L. Song, C. M. Li, M. L. Wang, X. Y. Sun, and X. Y. Hou, Appl. Phys. Lett. 90 (2007) 071109.
    [26] A. L. Burin, M. A. Ratner, J. Phys. Chem. A, 104, 4704 (2000).
    [27] P. Peumans, A. Yakimov, and S. .R. Forrest, J. Appl. Phys. 93 (2003) 3693.
    [28] T. Stubingera and W. Brutting, J. Appl. Phys. 90 (2001) 3632.
    [29] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, Appl. Phys. 84, 21, (2004).
    [30] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88 (2006) 073508.
    [31] M. Rusu, S. Wiesner, T. Mete, H. Blei, N. Meyer, M. Heuken, M. Ch. Lux-Steiner, K. Fostiropoulos, Jour. of Phys. 19 (2007)
    [32] J. Drechsel, B. Mnnig, F. Kozlowski, M. Pfeiffer, and K. Leo, and H. Hoppe, Appl. Phys. Lett. 86, 244102 (2005)
    [33] M. Reyes-Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 877, 083506 (2005).
    [34] B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner,F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N. S. Sariciftci, I. Riedel, V. Dyakonov, J. Parisi, Appl. Phys. 79, 1–14 (2004)
    [35] W. B. Chen, H. F. Xiang, Z. X. Xu, B. P. Yan, V. A. L. Roy, C. M. Che, and P. T. Lai, Appl. Phys. 91, (2007)

    下載圖示 校內:2009-06-27公開
    校外:2009-06-27公開
    QR CODE