簡易檢索 / 詳目顯示

研究生: 蔡忠翰
Tsai, Chung-Han
論文名稱: 以超音波噴霧熱裂解法沉積氧化鋅薄膜應用於紫外光檢測器之研究
Investigation and Fabrication of ZnO-based Ultraviolet Photodetector by Ultrasonic Spray Pyrolysis Deposition
指導教授: 許渭州
Hsu, Wei-Chou
共同指導教授: 劉漢胤
Liu, Han-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 103
中文關鍵詞: 超音波噴霧熱裂解法紫外光檢測器氧化鋅氧化鎳/氧化鎂鋅/氧化鋅矽/氧化鋅
外文關鍵詞: Ultrasonic spray pyrolysis deposition, UV photodetector, zinc oxide, nickel oxide / magnesium zinc oxide / zinc oxide, silicon / zinc oxide
相關次數: 點閱:150下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討以超音波噴霧熱裂解法沉積氧化鋅薄膜進而應用於紫外光檢測器。超音波噴霧熱裂解法為一種成本低廉、非真空環境成長、製程迅速且便於進行前驅物摻雜的ㄧ種薄膜沉積技術。透過製作金屬-半導體-金屬以及光二極體兩種形式的紫外光檢測器以及相關材料分析所得到的數據,認為此一技術在成長金屬氧化物薄膜的應用上具有極高的產業應用價值。
    為了瞭解氧化鋅薄膜的厚度、化學組成、折射係數、材料能隙及結晶性,在本研究中使用了(一)掃描式電子顯微鏡、(二)化學分析電子儀、(三)橢圓偏光儀、(四)光致發光、(五)X-射線繞射分析。首先,運用掃描式電子顯微鏡拍射試片的橫切面用以確認氧化鋅薄膜的厚度,再透過化學分析電子儀確認所形成的薄膜為氧化鋅,接著運用橢圓偏光儀確認氧化鋅材料的折射係數與消光係數,並將隨後的光致發光量測結果加以對比獲得一致性的結果,最後透過X-射線繞射分析確認採用超音波噴霧熱裂解法藉由慢速成長可得到高結晶性的氧化鋅薄膜。
    在確認氧化鋅薄膜的基本性質後,首先我們將此一薄膜利用金屬-半導體-金屬的形式製作了紫外光檢測器,運用相關研究分析所得到的結論,製作了極薄氧化鋅薄膜的金屬-半導體-金屬之紫外光檢測器,於偏壓5伏特的情況下,黑箱量測所得的暗電流低至約44皮安培;同時,在波長340奈米,強度為10微瓦的紫外光照射下,得到約0.14微安培,光暗電流比可達3185倍。
    在光二極體的部分,我們先製作了氧化鎳/氧化鎂鋅/氧化鋅之p-i-n光二極體,搭配以化學溶液沉積法製作之氧化鋅奈米柱,於偏壓負0.5伏特,紫外光波長為370奈米照射時,光響應為0.19安培/瓦,光暗電流比為169.91。基於此元件的製作經驗,我們更改了二極體結構的布局並且採用重摻雜p型矽基板與氧化鋅搭配,製作了於正負2伏特之間,整流比可達2萬倍的異質接面二極體。相比於氧化鎳/氧化鎂鋅/氧化鋅之p-i-n光二極體,結構的重整使得暗電流大幅下降至0.4奈安培於偏壓為負2伏特時,此外,於偏壓負4伏特時,對370奈米的紫外光光響應仍有0.11安培/瓦,光暗電流比(370奈米光電流與黑箱量測暗電流之比)可達896.07倍,且紫外光/可見光拒斥比(370奈米與400奈米之光電流比)達112.39倍,罕見於相似之研究應用。
    在本篇論文中,以超音波噴霧熱裂解法所製作的氧化鋅紫外光檢測器,相對於其他方式成長的氧化鋅具有成本優勢或是時間優勢或者兩者皆有,且實際製作之光檢測器,其操作性能相對於其他技術或有高或有低,應屬於實驗誤差,因此綜合元件特性、設備成本、製程時間等等因素考量,應用於實際量產有極大的潛力與優勢。

    This thesis mainly investigates the zinc oxide thin film deposited by ultrasonic pyrolysis, and applies to ultraviolet photodetectors. Ultrasonic Spray Pyrolysis is a thin film deposition technology which is low cost, non-vacuum, rapid process and easy to carry out precursor doping. Through the fabrication of metal-semiconductor-metal and photodiode two forms of UV photodetector and related materials analysis results, we believe that this technology in the growth of metal oxide films application has a very high industrial value.
    In order to understand the thickness, chemical composition, refractive index, material energy gap and crystallinity of zinc oxide thin films, the (1) scanning electron microscopy, (2)chemical analysis electron meters, (3) ellipsometer, (4) photoluminescence and(5) X-ray diffraction analysis are adopted in this research. First, a cross section of the sample was photographed using a scanning electron microscope to confirm the thickness of the zinc oxide film. And then XPS analysis are employed to confirm the ZnO films. Then the ellipsometry was used to confirm the refractive index and the extinction coefficient of the zinc oxide material, and the results of the subsequent photoluminescence measurements were consisted with this results. Finally, the X-ray diffraction analysis was carried out to confirm the high crystalline zinc oxide film can be obtained from ultrasonic spray pyrolysis deposition by slow growth method.
    After confirming the basic properties of the zinc oxide film, we first made the metal-semiconductor-metal UV photodetectors with ultra- thin ZnO film. The dark current measured by the black box is as low as about 44 picobar at a bias voltage of 5 V. At the same time, About 0.14 µA was measured under the illumination of 340 nm UV light with intensity of 10µW, photo-to-dark current ratio up to 3185 times.
    In the part of the photodiode, we first made the nickel oxide/magnesium zinc oxide/zinc oxide pin photodiode, with the zinc oxide nanorod arrays by chemical bath deposition. At the bias voltage of -0.5V, illumination under 370nm UV light, the responsivity is 0.19 A/W, and the photo-to-dark current ratio is 169.91.
    Because the dark current of the previous photodiode is large, We changed the layout of the diode structure. By the combination of heavily doped p-type silicon with zinc oxide, we fabricated a hetero-junction photodiode with the rectification ratio of up to 20,000 times between ±2V. The structural reorganization caused the dark current to drop significantly to 0.4 nA at a bias voltage of -2V. At bias voltage of -4V, the responsivity is 0.11 A/W, the ratio of photo-to-dark current ratio (370 nm photocurrent and dark current ratio) is 896.07 times, and the ultraviolet light / Visible light rejection ratio (370 nm and 400 nm) is 112.39 times, which is rare in similar research applications.
    In this thesis, the zinc oxide UV photodetectors produced by the ultrasonic spray pyrolysis deposition has the low cost or the time-saving advantage relative to other ways of growing zinc oxide. By the comprehensive consideration, we believe that the ultrasonic spray pyrolysis deposition used in mass production has great potential and advantages.

    摘要 I Abstract III 誌謝 VI Content VIII Table Captions XI Figure Captions XII Chapter 1 1 Introduction 1 1.1 Back Ground and Motivation 1 1-2 Introduction to ZnO Based Ultraviolet Photodetectors 2 1-2-1 Wide Bandgap Semiconductor Materials 2 1-2-2 Classification of Photodetectors 3 1-2-3 P-type Semiconductor Materials 3 1-2-4 ZnO Nanorod 4 1-2-5 ZnO Thin Film Deposition 4 1-3 Organization 7 Chapter 2 8 Basic Theory 8 2-1 Ultrasonic Spray Pyrolysis Deposition 8 2-2 The Basic Properties of Zinc Oxide 10 2-2-1 Crystal Structure 10 2-2-2 Defects 11 2-2-3 Near-Surface Depletion Phenomenon 12 2-3 Metal-Semiconductor Contacts 12 2-4 Schottky Barrier Height 13 2-5 pn Junction of Semiconductors 14 2-5-1 One-Sided Junctions and Heterojunctions 16 2-6 Principle of Photodetector 17 2-6-1 Responsivity and Quantum Efficiency 18 Chapter 3 19 Experiments 19 3-1 Metal-Semiconductor-Metal Ultraviolet Photodetectors 19 3-1-1 ZnO Thin Film Deposition by USPD 19 3-1-2 Electrode 20 3-2 NiO/Mg0.3Zn0.7O/ZnO p-i-n Photodiodes 22 3-2-1 Al2O3 Deposition by USPD 22 3-2-2 Al2O3 Wet Etching 23 3-2-3 Ni Metal Deposition and Forming NiO by Thermal Annealing 23 3-2-4 Mg0.3Zn0.7O/ZnO Thin Film Deposition by USPD 24 3-2-5 Cathode Forming 25 3-2-6 ZnO Nanorod Growth by CBD 26 3-3 P+Si/ZnO pn junction photodiodes 27 3-3-1 Al2O3 Deposition by USPD and wet etching. 27 3-3-2 ZnO Thin Film Deposition by USPD with Slow Growth Method 27 3-3-3 Cathode Forming 28 3-3-4 ZnO Thin Film Wet Etching 28 3-3-5 Anode forming 29 3-3-6 ZnO Nanorod Growth by CBD 29 Chapter 4 30 Results and Discussion 30 4-1 Material Analysis 30 4-1-1 Scanning Electron Microscope 30 4-1-2 X-ray photoelectron spectroscopy 31 4-1-3 Ellipsometry 32 4-1-4 Photoluminescence 34 4-1-5 X-ray Diffraction 36 4-2 Metal-Semiconductor-Metal Ultraviolet Photodetectors 37 4-2-1 Current-Voltage measurement 37 4-2-2 Spectral Response Measurement 38 4-2-3 Detectivity of ZnO MSM UV PDs 40 4-2-4 Summary 41 4-3 NiO/Mg0.3Zn0.7O/ZnO Photodiodes 42 4-3-1 Current-Voltage measurement 42 4-3-2 Spectral Response Measurement 43 4-3-3 Summary 44 4-4 The p+Si/ZnO Photodiodes 45 4-4-1 Current-Voltage measurement 45 4-4-2 Spectral Response Measurement 46 4-4-3 Detectivity and Dynamic Behavior Measurement 49 Chapter 5 50 Conclusion and future work 50 5-1 conclusion 50 5-2 Suggestions for Future Work 53 5-2-1 Multiple Quantum Wells Structure Light Emitting Diodes 53 References 56 Figures 61

    [1] P. Cheong, K. F. Chang, Y. H. Lai, K. Ho, I. K. Sou, and K. W. Tam, “A Zigbee-baesd wireless sensor network node for ultraviolet detection of flame,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5271-5277, Nov. 2011.
    [2] T. E. Barber, J. Castro, S. Hnatyshyn, N. L. Ayala, J. M. E. Storey, and W. P. Partridge, “Analysis of diesel engine exhaust by ultraviolet absorption spectroscopy,” Anal. Lett., vol. 34, no. 14, pp.2493-2506, Jun. 2007.
    [3] Q. Gao, Y. Zhu, Y. Xiao, and J. F. Kou, “Extracting missile targets in ultraviolet imagine with strong noise and burst interference,” J. Appl. Sci., vol. 31, no. 5, pp. 503-511, Sep. 2013.
    [4] P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, and H. Franke, “Water-core waveguide for pollution measurements in the deep ultraviolet,” App. Optics, vol. 37, no. 21, pp. 4991-4997, Jul. 1998.
    [5] W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coating,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 352-358, Feb. 2003
    [6] L. O. Bjorn, and R. L. McKenzie. “Attempts to probe the ozone layer and the ultraviolet-B levels of the past, “Ambio, vol. 36, no. 5, pp. 366-371, Jul. 2007.
    [7] O. Bulteel, A. Afzalian, and D. Flandre, “Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications,” Analog Integr. Circuits process., vol. 65, no. 3, pp399-405, Dec. 2010.
    [8] L .S. Vikas, K. A. Vanaja, P. P. Subha, and M.K. Jayaraj, “Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction,” Sensor Actuat A-Phys., vol. 242, pp. 116-122, May. 2016.
    [9] D. A. Neamen, “Semiconductor physics and devices,” McGraw Hill, 2012.
    [10] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, “Photoconductivity of ultrathin zinc-oxide films,” Jpn. J. Appl. Phys. 1, vol. 33, No. 12A, pp. 6611-6615, Dec. 1994.
    [11] M. R. Hasan, T. Xie, S. C. Barron, G. Liu, N. V. Nguyen, A. Motayed, M. V. Rao, and R. Debnath, “Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates,” Apl. Materials, vol. 3, No. 10, Oct. 2015.
    [12] Y. I. Alivov, Ü. Özgür, S. Dogan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan, and H. Morkoç, “Photoresponse of n-ZnO/p-SiC Heterojunction Diodes Grown by Plasma-Assisted Molecular-Beam Epitaxy,” Appl. Phys. lett., vol. 86, No. 24. Jun. 2005.
    [13] D. Zhang, K. Uchida, and S. Nozaki, “Visible-blind ultraviolet photodiode fabricated by UV oxidation of metallic zinc on p-Si,” Jpn. J. Appl. Phys., vol. 118, No.9, Sep. 2015.
    [14] R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am., vol. 34, No. 1, pp. 6-8, Jan. 1962.
    [15] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J Phys-Condens Mat., vol. 16, No. 25, pp. R829-R858, Apr. 2004.
    [16] H Lin, S. M. Zhou, T. H. Huang, H. Teng, X. D. Liu, S. L. Gu, S. M. Zhu, Z. L. Xie, P. Han, R. Zhang, “Characterization of m-plane ZnO thin film on gamma-LiAlO2 (100) substrate by metal-organic chemical vapor deposition,” J. Alloy. Compd., Vol. 467, No 1-2, pp. L8-L10, Jan. 2009.
    [17] M. Wraback, H. Shen, S. Liang, C. R. Goria, Y. Lu, “High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire,” Appl. Phys. Lett., vol. 74, No. 4, pp. 507-509. Jan. 1999.
    [18] L. Znaidi, “Sol–gel-deposited ZnO thin films: A review,” Mater. Sci. Eng. B-Adv., Vol. 174, No. 1-3, pp. 18-30, Oct. 2010.
    [19] R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, M. Menon, “Defect-induced optical absorption in the visible range in ZnO nanowires,” Phys. Rev. B, Vol. 80, No. 19, Nov. 2009
    [20] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, HC, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., Vol. 78, No. 16, pp. 2285-2287, Apr. 2001.
    [21] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, “Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO,” Appl. Phys. Lett., Vol. 82, No.4, pp. 532-534, Jan. 2003.
    [22] B. X. Lin, Z. X. Fu, Y. B. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates,” Appl. Phys. Lett., Vol. 79, No. 7, pp. 943-945, Aug. 2001.
    [23] E. N. Epie, W. K. Chu, “Ionoluminescence study of Zn− and O− implanted ZnO crystals: An additional perspective.” Appl. Surf. Sci., Vol. 371, pp. 28-34, May. 2016.
    [24] S. M. Lukas, L. MacManus-Driscoll, “ZnO - nanostructures, defects, and devices,” Mater. Today, Vol. 10, No. 5, pp. 40-48, May. 2007.
    [25] P. Sharma, K. Sreenivas, K. V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Jpn. J Appl. Phys., Vol. 93, No. 7, pp. 3963-3970, Apr. 2003.
    [26] Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, N. C. Greenham, “Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles,” Nano Lett., Vol. 8, No. 6, pp. 1649-1653, Jun. 2008.
    [27] S. M. Sze, and K. K. Ng, “Physics of semiconductor devices,” John Wiley & Sons, Inc., 2007.
    [28] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sensors J., vol. 11, no. 4, pp. 999-1003, 2011.
    [29] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, and G. J. Huang, “A high-responsivity GaN nanowire UV photodetector,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 4, pp. 996-1000, 2011.
    [30] N. M. Ravindra, P. Ganapathy, J. Choi, “Energy gap–refractive index relations in semiconductors–An overview,” Infrared Phys. Techn., Vol. 50, No.1, pp. 21-29. Mar. 2007.
    [31] T. C. Carusone, D. Johns, K. Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 2013.
    [32] L. T. Dou, Y. Yang, J. B. You, Z. R. Hong,W. H. Chang, G. Li, Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature Communications, Vol. 5, Nov. 2014.
    [33] N. H. Al-Hardan, A. Jalar, M. A. A. Hamid, L. K. Keng, N. M. Ahmed, R. Shamsudin, “A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions,” Sensor Actuat. A-Phys., Vol. 207. pp. 61-66, Mar. 2014.
    [34] S. K. Singh, P. Hazra, S. Tripathi, P. Chakrabarti, “Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity,” Superlattice. Microst., Vol. 91, pp. 62-69, Mar. 2016.
    [35] P. Hazra, S. K. Singh, S. Jit, “Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer,” Journal of Semiconductor Technology and Science, Vol. 14, No. 1, pp. 117-123, Feb. 2014.
    [36] H. Zhou, J. Mei, P. B. Gui, P. Tao, Z. H. Song, H. Wang, G. J. Fang, “The investigation of Al-doped ZnO as an electron transporting layer for visible-blind ultraviolet photodetector based on n-ZnO nanorods/p-Si heterojunction,” Mat. Sci. Semicon. Proc., Vol. 38, pp. 67-71, Oct. 2015.
    [37] I. S. Jeong, J. H. Kim, S. Im, “Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure,” Appl. Phys. Lett., Vol. 83, No.14, pp. 2946-2948, Oct. 2003.
    [38] T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, X. L. Du, “Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO/p-Si,” Appl. Phys. Lett., Vol. 94, No. 11, Mar. 2009.
    [39] C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, J. J. Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications,” Nanotechnology, Vol. 20, No. 24, Jun. 2009.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE